AWS Robomaker on Robotics RB3 Development Kit

These instructions are designed to help you get started with Amazon AWS Robomaker and Qualcomm® Robotics RB3
Development Kit. The robotics platform is based on the Qualcomm ® Snapdragon™ 845 mobile platform from
Qualcomm Technologies, so you may see the kit referenced as Qualcomm® SDA845 in some sections. The project will
walk you through the following steps:

1. Build and simulate a robot application in AWS cloud
2. Deploy the robot application to the Qualcomm Robotics RB3 development kit through Greengrass
3. Run the deployed robot application on the Qualcomm Robotics RB3 development kit

Here are a few things to keep in mind and test before you start. Please make sure that the Wi-Fi on target (Qualcomm
Robotics RB3 Development Kit) can access the AWS website. After deployment, the ROS master and robot application
are run inside the Docker. The sensor node/movebase packages/Kobuki packages are run outside the Docker (run on the
target). Please launch the movebase/Kobuki packages only after the ROS master is running successfully inside the
Docker.

Build and simulate a robot application in AWS cloud
1. Hello World
The “HelloWorld” example is designed to help you understand some basic concepts on ROS and AWS cloud such
as S3 bucket and deployment process. You don’t need to change any code in this stage. You only need to repeat
steps 1 and 2 below to “Restart the Hello World Simulation Application”
a. Create an AWS account.

b. Run example Hello world simulation job.

c. Create a development environment and a cloud 9 workspace. This will create a virtual PC (VPC) and a
workspace on that VPC.

d. Run HelloWorld app in your workspace.

e. Deploy the robot APP to target.
More details for this step can be found in section 2 of the instructions.

2. Other Examples
After the HelloWorld example, we recommend that you try other examples on Robomaker for better
understanding and improving your skills. Please keep in mind that each example has a corresponding simulation
job.
Run a new simulation job, and choose from one of the examples as seen below. We recommend “Robot
Monitoring” at this stage as it is based on movebase (navigation stack).

https://console.aws.amazon.com/
https://docs.aws.amazon.com/robomaker/latest/dg/gs-set-up.html
https://docs.aws.amazon.com/robomaker/latest/dg/gs-build-rundemo.html
https://docs.aws.amazon.com/robomaker/latest/dg/gs-build.html
file:///C:/Users/mistry/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/Y0PUPNHZ/1)%09https:/docs.aws.amazon.com/robomaker/latest/dg/gs-simulation.html
file:///C:/Users/mistry/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/Y0PUPNHZ/1)%09https:/docs.aws.amazon.com/robomaker/latest/dg/gs-deploy.html
https://docs.aws.amazon.com/robomaker/latest/dg/gs-tutorials.html

Hello world Info

“Hellovorld!" Learn the basics of how to structure your robot applications and simulation applications, edit code,
build, launch new simulations, and deploy applications to robots. Start from a basic project template

including a robot in an empty simulation world.

Robot monitoring Info

Monitor health and operational metrics for a robot in a simulated bookstore using Amazon CloudWatch
Metrics and Amazon CloudWatch Logs. Streamed metrics include speed, distance to nearest obstacle,

distance to current goal, collision count, robot CPU utilization, and RAM usage

Navigation and person recognition Info

Learn about robot navigation, video streaming, face recognition, and Text-to-Speech. A robot navigates
between goal locations in a simulated home and recognizes faces in photos. The robot streams camera
images to Amazon Kinesis Video Streams, receives face recognition results from Amazon Rekognition,

and speaks the names of recognized people using Amazon Polly.

Voice commands Info

Command a robot through natural language text and voice in a simulated bookstore using Amazon Lex
Default commands include “move <direction> <rate>", "turn <direction> <rate>" and “stop.” The robot

acknowledges and executes each command

a. Download the source code of example you choose.

b. Start from the section to “Modify and Build Applications” because you have already created an
environment while running the HelloWorld example.

¢. Download the source code that corresponds to the simulation job you choose.

d. Run this new simulation.

Create your own
Once you are familiar with the AWS Robomaker examples, it’s time to create your own application workspace,
simulation job and deploy your own robot application.

a. Create your workspace.

i. You can utilize some code samples from existing examples, for example the movebase demo.

b. Build and bundle your application.

c. Create a simulation job.
Useful Tips:

i. The last section Create a Simulation Job can be done from the Robomaker console.

ii. For the rest of the steps, please follow the guild in your cloud 9 command prompt.

https://docs.aws.amazon.com/robomaker/latest/dg/application-create-new.html
https://docs.aws.amazon.com/robomaker/latest/dg/application-build-bundle.html
https://docs.aws.amazon.com/robomaker/latest/dg/application-create-simjob.html

iii. After the simulation job is created successfully, you will see it’s in running state. In case of
failure, you can check the log to troubleshoot.

d. You can create a reference workspace based on movebase by the following steps.

i. Onthe AWS simulation environment, a workspace includes a robot application and a simulation
application. For the simulation application, you can utilize the Robot Monitoring example. Copy
the whole folder of this simulation application to your new simulation app and remove the
package aws_robomaker_simulation_common.

ii. Saving the below python script as a reference robot application to send the navigation goal to
movebase. the folder tree please refer an exist AWS example.

/AWS simulation \

Simulation

Your robot Al

(movebase and
robot model,
etc)

\ /

application

iii. After deployment, the robot application runs on the SDA845 target inside the docker. the
movebase runs outside the docker on SDA845. please refer to last section of guide to launch
movebase and Kobuki(the real robot).

/ SDAB845 target \

Navigation

Your robot stack

(movebase and
Kubuki, etc)

application

the below python script is a reference for your robot application.

#!/usr/bin/env python

import rospy
import actionlib
from actionlib msgs.msg import *

from geometry msgs.msg import Pose,

Point, Quaternion,

Twist

from move base msgs.msg import MoveBaseAction, MoveBaseGoal

class MoveBaseTest () :
def init (self):

rospy.init node('nav_test', anonymous=False)
rospy.on_shutdown (self.shutdown)

#pl = Point(-1.04219532013, 5.23599052429, 0.0)

pl = Point(-1.04219532013, 2.23599052429, 0.0)

gl = Quaternion (0.0, 0.0, -0.573064998815, 0.819509918874)
p2 = Point (1.64250051975, 1.58413732052, 0.0)

g2 = Quaternion (0.0, 0.0, -0.0192202632229, 0.999815273679)
p3 = Point(5.10259008408, 0.883781552315, 0.0)

g3 = Quaternion (0.0, 0.0, -0.455630867938, 0.890168811059)
p4 = Point (6.15312242508, -6.41992664337, 0.0)

g4 = Quaternion (0.0, 0.0, 0.999290790059, -0.037655237394)
p5 = Point(1.73421287537, -5.13594055176, 0.0)

g5 = Quaternion (0.0, 0.0, 0.718415199022, 0.695614549743)
p6 = Point (-3.83528089523, -5.31936645508, 0.0)

g6 = Quaternion (0.0, 0.0, 0.701646950739, 0.712524776073)
quaternions = list()

quaternions.append(gl)

quaternions.append (g2)

quaternions.append (g3)

#quaternions.append (g4)

#quaternions.append (g5)

#quaternions.append (g6)

points = list()

points.append(pl)

points.append (p2)

points.append (p3)

#points.append (p4)

#points.append (p5)

#points.append (p6)

goals = list()

goals.append (Pose (points[0], quaternions[0]))
goals.append (Pose (points[1], quaternions[1l]))
goals.append (Pose (points[2], quaternions[2]))
#goals.append (Pose (points[3], quaternions[3]))
#goals.append (Pose (points[4], quaternions([4]))
#goals.append (Pose (points[5], quaternions([5]))

rospy.loginfo ("*** started navi test")

Publisher to manually control the robot (e.g. to stop it, queue size=5)
self.cmd vel pub rospy.Publisher ('cmd vel', Twist, queue size=5)

Subscribe to the move base action server
self.move base actionlib.SimpleActionClient ("move base", MoveBaseAction)
self.move base.wait for server()

rospy.loginfo ("Connected to move base server")
rospy.loginfo ("Starting navigation test")

Initialize a counter to track goals

i=0

while not rospy.is_ shutdown () :
Intialize the waypoint goal
goal = MoveBaseGoal ()
goal.target pose.header.frame id = 'map'
goal.target pose.header.stamp = rospy.Time.now ()
goal.target pose.pose = goals[i%3]

#move toward the goal
self.move (goal)
i+=1

def move (self, goal):
Send the goal pose to the MoveBaseAction server
self.move base.send goal (goal)

Allow 1 minute to get there
finished within time = self.move base.wait for result (rospy.Duration (60))

If we don't get there in time, abort the goal
if not finished within time:
self.move base.cancel goal ()
rospy.loginfo ("Timed out achieving goal")
else:
if self.move base.get result():
rospy.loginfo ("Goal done: %s", goal)

def shutdown (self) :
rospy.loginfo ("Stopping the robot...")
Cancel any active goals
self.move base.cancel goal ()
rospy.sleep(2)
Stop the robot
self.cmd vel pub.publish (Twist())
rospy.sleep (1)

if name == "'_main_ ':
try:
MoveBaseTest ()
except rospy.ROSInterruptException:
rospy.loginfo ("Navigation test finished.")

e. Deploy your own application
Details for deploying your application are described below.

https://docs.aws.amazon.com/robomaker/latest/dg/gs-deploy.html

Deploy the robot application to RB3 development kit through AWS IOT Greengrass

Refer to the AWS Greengrass official guide for the latest getting started instructions.

1. Create IAM policy
a. Open IAM page above and select “Policies” ---> “Create policy”
b. Choose “Greengrass”
c. Type the policy info in “JSON” tab, copy the JSON code below and modify s3 BUCKET info

Visual editor JSON Import managed policy

i
"Version®: "2012-19-17",
“Statement”: [
"Effect™: "Allow",
"Action™: [
"robomaker: UpdateRobotDeployment™
1,
"Resource”: "#"
1s
{
#input the bucket in which your robomaker app resides in®
§ A
"Resource”: ["arn:aws:s3::|my-robot-application-source-bucket/*|']
}
] -
1 s

Cancel I Review policy I

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"robomaker:UpdateRobotDeployment"
1,
"Resource": "*"
by
{
"Effect": "Allow",
"Action": [
"s3:List*",
"s3:Get*"
1,
"Resource": ["arn:aws:s3:::my-robot-application-source-bucket/*"]
}
]
}

d. Input your own policy name and then “Create policy”

https://docs.aws.amazon.com/greengrass/latest/developerguide/what-is-gg.html
https://docs.aws.amazon.com/robomaker/latest/dg/getting-started.html
https://console.aws.amazon.com/iam/home?#/policies

Review policy

..@-_" characters. Maximum 128 characters.

Maximum 1000 characters. Use alphanumeric and "+=, @-_' characlers.

Name*
e
Use alphanumeric and
Description
summary

This policy defines some actions, resources, or conditions that do not provide permissions. To grant access, policies must have an

action that has an applicable resource or condition. For details, choose Show remaining. Learn more

Q Filier

Service ~

Allow (2 of 174 services) Show remaining 172

RoboMaker
A

83

* Required

2. Create IAM role

a.

None

Limited: Read

Request col

All resources None
BucketName | string like | my- None
Cancel Previous

Open IAM page below and select “Role” ---> “Create role”
b. Choose “Greengrass”

Select type of trusted entity

."i AWS service

EC2, Lambda and others

Allows AWS services to perform actions on your behalf. Learn more

Choose the service that will use this role

EC2

Allows EC2 instances to call AWS services on your behaif

Lambda

Allows Lambda functions to call AWS services on your behalf

API Gateway

AWS Backup

AWS Support

Amplify

AppSync

Application Auto Scaling

Application Discovery
Service

Batch

CloudFormation
CloudHSM

CloudTrail

Cloudwatch Application

Insights

* Required

@ Another AWS account @ E:E‘:‘iticd:rr:ryweﬂ .
dwl Eelonging io you or 3rd party :hrc!-.w:er .
CodeDeploy EKS Kinesis
Comprehend EMR Lambda
Config ElastiCache Lex
Connect Elastic Beanstalk License Manager
DMS Elastic Container Service Machine Leaming

Data Lifecycle Manager
Data Pipeline

DataSync

Deeplens

Directory Service
DynamoDB

EC2

ECZ - Fleet

Elastic Transcoder
ElasticLoadBalancing
Forecast

Glue

GuardDuty

Inspector

loT

Macie
MediaConvert
OpsWorks
RAM

RDS

Redshift
Rekognition

RoboMaker

Cancel

SAML 2.0 federation
Your corporate directory

33

SMS

SNS

SWF
SageMaker
Security Hub
Service Catalog
Step Functions
Storage Gateway
Transfer
Trusted Advisor
VPC

WorkLink

https://console.aws.amazon.com/iam/home?#/roles

c. Select the policies below and then select “Next”

AWSGreengrassResourceAccessRolePolicy
Create role

~ Attach permissions policies

Choose one or more policies to attach to your new role.

Create policy

Filter policies ~ Q AwsGreengrassResourceAccessRolePolicy

Policy name ~ Used as

| s AWSGreengrassResourceAccessRolePolicy|

SZ_IOE_POLICY

Permissions policy (2)

Create role

~ Attach permissions policies
Choose one or more policies to attach to your new role

Create policy

Filter policies Q SZ_I0E_POLICY

Policy name « Used as

¢ SZ_I0E_POLICY None

* Required

d. “Add tags” page is optional, skip it by selecting “Next”
e. Enter your IAM role name and create role.

Create role

Review

Provide the required information below and review this role before you create it

* Required

f. Edit trust relationship, and copy the JSON settings seen below:

{

Role name” ”sz I0E_ROLE|

o~
L
Showing 1 result

Description

Policy for AWS Greengrass service role ...

1°34
o~
L=

Showing 1 result

Description

cance' PreViDus

L @

Use alphanumeric and '+=,.@-_' characters. Maximum 64 characters.

Role description | Allows Greengrass to call AWS services on your behalf.

Mavinnuann 4000 sharncdars |len alnhanomaris and la— S

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Principal": {

"Service": [

"greengrass.amazonaws.com",

"lambda.amazonaws.com"

s

" nharastorn

Cancel Previous

"Action": "sts:AssumeRole"

}
]
}
Roles » SZ_IOE_ROLE
Search 1AM L]
Summary
Dashboard
Role ARN arn:aws:iam:615181698874.r0le/SZ_IOE_ROLE (f
Groups
Role description Allows Greengrass to call AWS services on your behalf. | Edit
Users
Instance Profile ARNs [¥a)
Roles
Path /
Policies
Creation time 2019-04-17 11:25 UTC+0800
Identity providers
Maximum CLI/AF| session duration 1 hour Edit

Account settings
Credential report Permissions Trust relationships Tags Access Advisor Revoke sessions

You can view the trusted entities that can assume the role and the access conditions for the role. Show policy document

Encryption keys

Trusted entities

The following trusted entities can assume this role

Trusted entities
The identity provider(s) greengrass.amazonaws.com

3. Create AWS loT Greengrass Group
a. Open page below, select “Create Group”

Services Resource Groups -~ * mrlee1994lee ~ N. Virg

'ﬁ]} AWS loT Greengrass Groups

Monitor
MyGroup o0
Onboard GREENGRASS GROUP

Manage

Greengrass

Cores

Devices

b. Select “Use easy creation”
c. Specify a Group name and then click “Next”

SET UP YOUR GREENGRASS GROUP

Name your Group

The Greengrass Group is a cloud-configured managed collection of local devices and Lambda functions that can be programed to
communicate with each other through a Core device. Groups can contain up to 200 local devices.

Group Name

SZ_10E GROUP

Cancel

https://console.aws.amazon.com/iot/home?region=us-east-1#/greengrass/grouphub

d. Specify a Greengrass Group name and then click “Next”

SET UP YOUR GREENGRASS GROUP

Every Group needs a Core to function

Every Greengrass Group requires a device running Core software. It enables communication between Devices, local Lambda functions,
and AWS cloud computing services. Adding information to the Registry is the first step in provisioning a device as your Greengrass
Core.

Name

5Z_IOE_GROUP_Core

Show optional configuration (this can be done later) -

canml “

Select “Create Group and Core”

f. Download your security resources as pic shown below, and select “Finish”
*** This is your only chance to download the security resources.
*** Downloaded security keys will be used in the next step.

Connect your Core device

The final steps are to load the Greengrass software and then connect your Core device
to the cloud. You can defer connecting your device at this time, but you must download
your public and private keys now as these cannot be retrieved later.

Download and store your Core's security resources

A certificate for this Core 21adc60339.cert.pem
A public key 21adc6033 5. publickey
A private key 21adc60339 private key
Core-specific config file config.json

| Download these resources as a tar.gz

You also need to download a root CA for AWS loT:

Choose a root CA |~

Download the current Greengrass Core software

By downloading this software you agree to the Greengrass Core Software License Agreement. To install Greengrass on your Core
download the package and follow the Getting Started Guide.

Choose your platform |~

g. Attach the IAM role to the Greengrass Group

SZ_IOE_GROUP

Not deployed

I Settings

Mo role has been attached to the SZ_I0E_GROUP Group

Group ID

1dd948ec-f859-4266-8f62-e15a38d92999

Certification authority (CA) and local connection configuration

Device certificate lifetime period

By changing this setting you control the period during which a Device can establish a communication with its
Core. The next new period will be 7 days.
7 days 30 days 30+

Congratulations! You have successfully created the IAM policy, role and created a Greengrass group for
Robomaker. Next, let’s look at how you can run the Greengrass Core on RB3 development kit.

Run GG-Core in RB3 development kit Docker
1. Prerequisites and launching the docker service
a. Follow the steps below to connect the development kit to the internet.
Use below steps to enable WLAN and dhcp.

$ insmod usr/lib/modules/4.9.103/extra/wlan.ko

$ ifconfig wlanO up

$ wpa_supplicant -iwlan0 -Dnl80211 -c /data/misc/wifi/wpa_ supplicant.conf -0
data/misc/wifi/sockets &

$ /usr/sbin/dhcpcd wlan0 -t 0 -o domain name servers --noipv4ll -h -b &

$ wpa cli -iwlan0 -p /data/misc/wifi/sockets

$ add network

$ set network 0 ssid "Your SSID"

$ set network 0 psk "SSID Password"

$ enable network 0

Ping some website to make sure wlan network is up.
b. Run chronyd, and make sure system time is correct.
Resolve host name “sda845” to “127.0.0.1” by add content below to /etc/hosts

d. create a work directory on target

$ mkdir -p /greengrass/certs

$ mkdir -p /greengrass/config

Push files listed below to /greengrass directory
i. arm32v7-ubuntu-18.04-aws-iot-greengrass.tar
ii. your-security-file.tar.gz

Copy the content in page below and save it as /greengrass/certs/root.ca.pem
https://www.amazontrust.com/repository/AmazonRootCAl.pem
Decompress the secure file

$ tar xzvf your-security-file.tar.gz -C /greengrass
launch Docker service
$ systemctl start docker

Pro Tip: You can check docker with the command “ps -ef | grep docker”
load docker image

$ docker load -i arm32v7-ubuntu-18.04-aws-iot-greengrass.tar

Pro Tip: You can run command “docker images” and you’ll see docker images already installed your
system

Environment setup is now done, proceed to run Greengrass Group core on target

$ docker run --rm -it --name aws-iot-greengrass --entrypoint /greengrass-entrypoint.sh -v
/greengrass/certs:/greengrass/certs -v /greengrass/config:/greengrass/config -v
/greengrass/log:/greengrass/ggc/var/log -p 8883:8883 armv7l-ubuntul8.04/test-aws-iot-
greengrass:1.8.0

Pro Tip: Press “CTRL+P+Q” keys to detach docker, it’s running in the background now!
Check docker status
$ docker ps

Check Greengrass Group core log
A sample log seen below indicates that your Greengrass Group core successfully connected.

$ tail -F /greengrass/log/system/runtime.log

[2019-04-18T04:23:20.1222] [INFO]-Started Deployment Agent and listening for updates
[2019-04-18T04:23:20.1222] [INFO]-Started Deployment Agent and listening for updates

[2019-04-18T04:23:20.1222] [INFO]-MQTT connection connected. Start subscribing: clientId:
SZ IOE GROUP Core

[2019-04-18T04:23:20.122%Z] [INFO] -Deployment agent connected to cloud
[2019-04-18T04:23:20.123Z] [INFO]-Start subscribing 2 topics, clientId: SZ IOE GROUP Core

[2019-04-18T04:23:20.123Z] [INFO]-Trying to subscribe to topic S$aws/things/SZ IOE GROUP Core-
gda/shadow/update/delta

[2019-04-18T04:23:20.806Z] [INFO] -Subscribed to : S$aws/things/SZ IOE GROUP Core-
gda/shadow/update/delta

[2019-04-18T04:23:20.806Z] [INFO]-Trying to subscribe to topic S$aws/things/SZ IOE GROUP Core-
gda/shadow/get/accepted

https://www.amazontrust.com/repository/AmazonRootCA1.pem

[2019-04-18T04:23:21.307Z] [INFO] -Subscribed to : S$aws/things/SZ IOE GROUP Core-
gda/shadow/get/accepted

[2019-04-18T04:23:21.789Z] [INFO]-All topics subscribed, clientId: SZ IOE GROUP_ Core

m. kill container (stop greengrass-core)

$ docker kill <ggc container-id> ## get container id by docker ps

Pro Tip: If you do not kill the container now, you will encounter a Greengrass Group core crash issue in
the next step.

Create robot application
Follow the steps above to create your own application. While creating the application, be sure to select the
correct AWS region (us-east-1, us-west-2, etc.).
a. Configure your robot app
i. Inside “Development” — “Robot applications” page, select your application and click “Actions”

button,
AWS RoboMaker Robot applications
‘What is a robot application? X
A robot application is an application built using the robotic operating system (ROS) to run on a physical robot. It is customized for the

robot hardware and architecture

Robot applications | G | | Actions W | Create robot application
Update
a ; ®

Delete

Name v Last updated v

@ Rotate Sun April 14, 2019 1:24:58 AM

ii. Enter your robot-app S3 address to the “ARM64 source file”

General

Name

Software suite name

ROS v

Software suite version

v

Sources Info

You need to provide at least one source file. You can provide more to support multiple architectures.

X86_64 source file
3/ fawsrobomakerhelloworld-155486286143-bundlesbucket-149tvru3gadq/hello-world-robot.t

Entered value should match s3://bucket/folder. Click Info above for more information.

ARMHF source file

Entered value should match s3://bucket/folder. Click Info above for more information.

ARMG&4 source file

" bomakerhelloworld-155486286143-bundlesbucket-149tvru3gadg/hello-world-robot.armhf.tar.gd | |

Entered value should match s3://bucket/folder. Click Info above for more information.

You can get this info from page https://s3.console.aws.amazon.com/s3/home?region=us-east-1

https://s3.console.aws.amazon.com/s3/home?region=us-east-1

iii. Inside “Development” — “Robot applicants”, click your app name, and then select “create new
version”

b. “Fleet management” — “Robots” — “Create robot”

General

MName

Must be between 1 and 255 characters. Valid characters are a-z, A-Z, 0-9, - (hyphen), and _ (underscore). No spaces.

Architecture Info

v

AWS Greengrass group details

AWS Greengrass group Info

5Z_IOE_GROUP v C

Tags - optional Info

Key Value - aptional

Remove tag

Add tag

Cancel Create

“Fleet management” — “Fleets” — “Create fleet”

Create fleet

Configuration

Name

5Z_I0E FLEET|

Must be between 1 and 255 characters. Valid characters are a-z, A-Z, 0-9, - (hyphen), and _ (underscere). No spaces.

Tags - optional Info

Key Value - optional

‘ Enter ke ‘ ‘ Enter value ‘ ‘ Remove tag

Cancel Create

Click your fleet name inside “Fleets” page, then click “Register new” button and register your robot.

O N
Name v Status v Architecture v Fleet name v
|° SDA845 @ Available ARME4 =
1 3

e. Inside “Fleet management” — “Deployment” — “Create deployment”. Configure your robot app info, and
then click “create”

Configuration
Fleet

v
Robot application

v

<~ thismay be different according to your own setting

Robot application version Info

A version is a numbered "snapshot" of your robot application. It cannot be changed. A numbered version is required for depl

[])

Deployment launch configuration

Package name Info

hello_world_robot

Must be between 1 and 1024 characters. Valid characters are a-z, A-Z, 0-9, - (hyphen), _ {underscore), and . (period). No space

Launch file Info

deploy_rotate.launch

Must be between 1 and 1024 characters. Valid characters are a-z, A-Z, 0-9, - (hyphen), _ (underscore), and . (period). No space

3. Deploy lambda (robot app) to target
Log into the Greengrass console and navigate to the Group hub.
Here you can see:
a. Alambda function is added to the robot application that was created.
b. Group status is “In progress”

SZ_IOE_GROUP

@ In progress Actions ~

Deployments Lambdas Add Lambda

Subscriptions

aws-robomaker-deployment-function-armé4_DO_NOT_DELETE using & @

LAMBDA FUNCTION

— x
O— 2\ Lambda functions can use secrets at the edge

Your Lambda functions can now securely access secrets. A secret can be a password,
APl key, OAuth token, or arbitrary text that's created in AWS Secrets Manager and
deployed to the Greengrass Core. Learn more

c. Select “Action” -- “reset deployment” to reset the status because we need some other configuration

Reset the deployment for this Greengrass Group

You have elected to reset the deployments for Group

a3a41f426-bd3f-4e68-bc41-14bfb8ec435c

This allows you to clean-up the cloud resource so you can delete the Greengrass Group. It also returns the
Core to a pre-deployment state.

M oo you want to force the reset

Cancel Reset deployment

d. In “setting” page, set “Lambda function containerization” to “no container”
This is an important step before you can deploy the Lambda, or Greengrass Group core will crash

Core connectivity information

Local connection detection

@ Automatically detect and override connection information

Manually manage cennection information

View Cores for specific endpoint information

Lambda runtime environment

Default Lambda function user ID/ group 1D
Choose the user or group permissions that are used by default to run Lambda functions in this group.

Learn more
@ ggc_user/ggc_group
Another user ID/group 1D

Default Lambda function containerization
Choose whether each Lambda function in the group runs in a separate Greengrass container instance or without
containerization. Learn more

Greengrass container

| Update default Lambda execution configuration

e. Run Greengrass Group core on target

$ docker run --rm -it --name aws-iot-greengrass --entrypoint /greengrass-entrypoint.sh -v
/greengrass/certs:/greengrass/certs -v /greengrass/config:/greengrass/config -v
/greengrass/log:/greengrass/ggc/var/log --network host armv7l-ubuntul8.04/test-aws-iot-
greengrass:1.8.0

f. Deploy

SZ_IOE_GROUP

Successfully completed

Deployments Group history overview By deployment Delete Group

o Reset Deployments
ubsCcriptions

Deployed Version Status
Cores
Devices Apr 18, 2019 6:12:56 PM +0800 Forced deployments reset ® Successfully compl...
Lambdas Apr 18, 2019 5:54:46 PM +0800 8f09c880-5d50-4e28-883f-Bcebc74649df In progress

Resources

Congratulations! You have successfully deployed the robot application to RB3 development kit through
AWS loT Greengrass.

Run the deployed robot application on RB3 development kit

The robot application ROS node would run along with ROS master inside the docker once the deployment is finished.
You need to run the Kobuki ROS package or other ROS packages (for example movebase) after ROS master is running.
Before you run these packages, you need to setup the devices. Here is a script to help you with easy setup.

#! /bin/sh

#hack the kobuki node minimal.launch first: remap odom to wheel odom
#hack the /etc/ros 8009.bash: set the ROS IP, ROS HOSTNAME and
#ROS_MASTER URI with IP address directly, 'localhost' doesnot work
source /etc/ros_845.bash

roslaunch /opt/ros/indigo/share/kobuki node/launch/minimal.launch &
sleep 5

roslaunch /data/pathplan/launch/movebase 845.launch

Setup the ROS env:

1. Copy the script to the RB3 kit.
adb push launch movebase.sh /home
adb shell

2. Edit the ROS environment to change the IP address

vi /opt/ros/indigo/share/ros_env.bash

3. Set IP address as seen below
export ROS MASTER URI=http://192.168.1.102:11311
export ROS IP=192.168.1.102
export ROS HOSTNAME=192.168.1.102

4. Switch to home directory
cd /home

5. Launch!
$./launch _movebase.sh

Congratulations! You are now up and running with Robomaker on the RB3 Development kit.

The “Hello World” example is designed to make the Kobuki base rotate in place. The reference application is designed to
make the Kobuki base move. We cannot wait to see how you use these powerful platforms, you can share your projects
with us here.

https://developer.qualcomm.com/projects/project-submission
https://developer.qualcomm.com/projects/project-submission

