2.1. OPENGL ES FUNDAMENTALS 6

agree pixel for pixel when presented with the same input ewsen run on identi-
cal framebuffer configurations.
Finally, command names, constants, and types are prefixgeriGL (bydgl,
GL_, and@., respectively inC) to reduce name clashes with other packages. The
prefixes are omitted in this document for clarity.

2.1.1 Numeric Computation

The GL must perform a number of numeric computations durmegdourse of its
operation.

Implementations of the Common profile will normally perfocomputations
in floating-point, and must meet the range and precisionireopents defined un-
der”Floating-Point Computation” below.

Implementations of the Common-Lite profile will normallyrfim computa-
tions in fixed-point, and must meet the more relaxed rangepagcision require-
ments defined undéFixed-Point Computation” below. However, Common-Lite
implementations are free to use floating-point computafitimey wish.

Floating-Point Computation

We do not specify how floating-point numbers are to be rempteseor how
operations on them are to be performed. We require simphyrilnabers’ floating-
point parts contain enough bits and that their exponentdield large enough
so that individual results of floating-point operations aoeurate to about part
in 10°. The maximum representable magnitude of a floating-poimibver used
to represent positional or normal coordinates must be at #3; the maximum
representable magnitude for colors or texture coordinaest be at least'’. The
maximum representable magnitude for all other floatingypwalues must be at
least2’?. - 0=0-2=0. 12 =2-1=2.24+0=0+2 =2 0¥ =
1. (Occasionally further requirements will be specified.) S¥lsingle-precision
floating-point formats meet these requirements.

Any representable floating-point value is legal as input GLacommand that
requires floating-point data. The result of providing a eaibat is not a floating-
point number to such a command is unspecified, but must ndtte&L interrup-
tion or termination. In IEEE arithmetic, for example, prdwvig a negative zero or
a denormalized number to a GL command yields predictabldtsgsvhile provid-
ing a NaN or an infinity yields unspecified results. The idiedi specified above
do not hold if the value of is not a floating-point number

Fixed-Point Computation

Version 1.1.10 (DRAFT - April 4, 2007)

2.9. BUFFER OBJECTS 25

2.9.1 \Vertex Arrays in Buffer Objects

Blocks of vertex array data may be stored in buffer object$ wie same format
and layout options supported for client-side vertex arrays

The client state associated with each vertex array typeded a buffer object
binding point The commands that specify the locations and organizatibnsrtex
arrays copy the buffer object name that is boundRRAY BUFFER to the binding
point corresponding to the vertex array of the type beingi$igel. For example,
the NormalPointer command copies the value ARRAY_BUFFER BI NDI NG (the
queriable name of the buffer binding corresponding to tingeieARRAY_BUFFER)
to the client state variablSORVMAL_ARRAY_BUFFER BI NDI NG.

Rendering command3rawArrays andDrawElementsoperate as previously
defined, except that data for enabled vertaxays are sourced from buffers if the
array’s buffer binding is non-zero. When an array is souriteth a buffer object,
the pointer value of that array is used to compute an offediasic machine units,
into the data store of the buffer object. This offset is coteduby subtracting a
null pointer from the pointer value, where both pointers taeated as pointers to
basic machine units

It is acceptable for vertexarrays to be sourced from any combination of client
memory and various buffer objects during a single rendeoiperation.

2.9.2 Array Indices in Buffer Objects

Blocks of array indices may be stored in buffer objects with same format op-
tions that are supported for client-side index arrays. idijt zero is bound to
ELEMENT_ARRAY_BUFFER, indicating thatDrawElementsis to source its indices
from arrays passed as thaices parameters.

A buffer object is bound t@&LEVENT_ARRAY_BUFFER by calling BindBuffer
with target set toELEMENT_ARRAY_BUFFER, andbuffer set to the name of the buffer
object. If no corresponding buffer object exists, one isiatized as defined in
section 2.9.

The command®BufferData and BufferSubData may be used witharget
set to ELEMENT_ARRAY_BUFFER. In such event, these commands operate in the
same fashion as described in section 2.9, but on the buffezrdly bound to the
ELEMENT _ARRAY_BUFFER target.

2To resume using client-side vertex arrays after a buffeectbhas been bound, caflind-
Buffer (ARRAY_BUFFER,0) and then specify the client vertex array pointer usireyappropriate
command from section 2.8

Version 1.1.10 (DRAFT - April 4, 2007)

2.11. CLIPPING 35

the plane equation coefficients in eye coordinates. All {goivith eye coordinates
(Ze Ye 2e we)T that satisfy

Py o oy)| % =0

lie in the half-space defined by the plane; points that do atify this condition
do not lie in the half-space.

Client-defined clip planes are enabled with the genEreble command and
disabled with theDisable command. The value of the argument to either com-
mand isCLI P_.PLANE; wherei is an integer between 0 and specifying a value
of i enables or disables the plane equation with indexThe constants obey
CLI P_.PLANE; = CLI P_.PLANEO + .

If the primitive under consideration is a point, then clipgpipasses it un-
changed if it lies within the clip volume; otherwise, it issdarded.

If the primitive is a line segment, then clipping does nothta it if it lies en-
tirely within the clip volume and discards it if it lies ergly outside the volume.
If part of the line segment lies in the volume and part liessiml#, then the line
segment is clipped and new vertex coordinates are compatezhe or both ver-
tices. A clipped line segment endpoint lies on both the pagline segment and
the boundary of the clip volume.

This clipping produces a valu®, < t < 1, for each clipped vertex. If the
coordinates of a clipped vertex aReand the original vertices’ coordinates drg
andPs, thent is given by

P =tP; + (1—1)Py.

The value oft is used in color and texture coordinate clipping (sectidi2 7).

If the primitive is a triangle, then it is passed if every orfeite edges lies
entirely inside the clip volume and either clipped or disest otherwise. Clip-
ping may cause triangle edges to be clipped, but becausesciivity must be
maintained, these clipped edges are connected by new ddgditalong the clip
volume’s boundary. Thus, clipping may require the intrdec of new vertices
into a triangle, creating a more genepalygon.

If it happens that a triangle intersects an edge of the cliprae’s boundary,
then the clipped triangle must include a point on this bouynéage

A line segment or triangle whose vertices hayevalues of differing signs may
generate multiple connected components after clipping.ir@ilementations are

Version 1.1.10 (DRAFT - April 4, 2007)

2.12. COLORS AND COLORING 45

Let the colors assigned to the two vertid@s andP5 of an unclipped edge be
c1 andc,. The value oft (section 2.11) for a clipped poiR is used to obtain the
color associated witl? as

c=tc; + (1 —t)co.

(Multiplying a color by a scalar means multiplying each of ®, B, and A by
the scalar.) Polygon clipping may create a clipped vertex@lan edge of the
clip volume’s boundary. This situation is handled by notihgt polygon clipping
proceeds by clipping against one plane of the clip volumeignlary at a time.
Color clipping is done in the same way, so that clipped paahisgays occur at the
intersection of polygon edges (possibly already clippedhwthe clip volume’s
boundary.

Texture coordinates must also be clipped when a primitiveligped. The
method is exactly analogous to that used for color clipping.

2.12.8 Final Color Processing

Each color component (which lies [, 1]) is converted (by rounding to nearest)
to a fixed-point value withn bits. We assume that the fixed-point representation
used represents each valbg2™ — 1), wherek € {0,1,...,2™ — 1}, ask (e.g.
1.0 is represented in binary as a string of all ones)must be at least as large as
the number of bits in the corresponding component of the étauffer. m must be
at least 2 for A if the framebuffer does not contain an A conguunor if there is
only 1 bit of A in the framebuffer.

Because a number of the forky (2™ — 1) may not be represented exactly as
a limited-precision floating-point quantity, we place atfigr requirement on the
fixed-point conversion of color components. Suppose thétilg is disabled, the
color associated with a vertex has not been clipped, andilbewas specified with
unsigned byte or integer values. When these conditions aigfied, an RGBA
component must convert to a value that matches the compasespecified in
the command defining it: ifn is less than the number of bitswith which the
component was specified, then the converted value must gwuaiost significant
m bits of the specified value; otherwise, the most signifiédnits of the converted
value must equal the specified value.

“Since this computation is performed in clip space beforésitin by w., clipped colors and
texture coordinates are perspective-correct

Version 1.1.10 (DRAFT - April 4, 2007)

C.4. PACKAGING 160

version 1.1.10, draft of 2007/02/06 Noted in section 2.10.3 that normal vectors
are treated as row vectors transformed by matrix postniigiéifion, which may be
unfamiliar to some graphics programmers. Removed X Windgstedn trademark
information from the copyright pages

version 1.1.10, draft of 2007/03/31 Document scaling of integer to fixed-point
parameters. Polygon smooth mode is not supported. Fronbacidmaterial col-
ors exist in terms of the API, but are constrained to alwaygetthe same val-
ues. General polygons are not supported. Remove referémdesture borders.
Many other minor fixes and clarifications from WG review - sda#hos member
Bugzilla bugs 1247, 1257, 1258, 1259

version 1.1.10, draft of 2007/04/04 Clarify that floating-point identities do not
hold for infinite or NaN values in section 2.1.1. Remove adwabout preferred
vertex buffer object formats in section 2.9.1. Mandate psjnite clipping (do not
allow scissoring) in section 2.11, pending Working Grougotation of the open
issue. Clarify that color and texture coordinate clippiregided in section 2.12.7
is already perspective correct

Version 1.1.10 (DRAFT - April 4, 2007)

