
Copyright c© 1992-2006 Silicon Graphics, Inc.

This document contains unpublished information of
Silicon Graphics, Inc.

This document is protected by copyright, and contains information proprietary to
Silicon Graphics, Inc. Any copying, adaptation, distribution, public performance,
or public display of this document without the express written consent of Silicon
Graphics, Inc. is strictly prohibited. The receipt or possession of this document
does not convey any rights to reproduce, disclose, or distribute its contents, or to
manufacture, use, or sell anything that it may describe, in whole or in part.

U.S. Government Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions set forth
in FAR 52.227.19(c)(2) or subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013 and/or in similar or succes-
sor clauses in the FAR or the DOD or NASA FAR Supplement. Unpublished rights
reserved under the copyright laws of the United States. Contractor/manufacturer is
Silicon Graphics, Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043.

OpenGL is a registered trademark of Silicon Graphics, Inc.

1.3. OPENGL ES PROFILES 2

moves a great deal of redundant and legacy functionality, while adding a few new
features. The differences between OpenGL ES and OpenGL are not described in
detail in this specification; however, they are summarized in a companion doc-
ument titledOpenGL ES Common/Common-Lite Profile Specification (difference
specification).

1.3 OpenGL ES Profiles

This specification described twoprofilesfor OpenGL ES : Common and Common-
Lite. While many commands are shared by both profiles, some commands are only
supported by one profile.

The Common-Lite profile differs from the Common profile primarily in be-
ing targeted at a simpler class of graphics system not supporting high-performance
floating-point calculations. The Common-Lite profile supports only commands
taking fixed-point arguments, while the Common profile also includes many equiv-
alent commands taking floting-point arguments.

Specific differences between the two profiles, including a summary of
commandsonly supported in the Common profile, are documented in Appendix C
and in appropriate sections of the specification.

1.4 Programmer’s View of OpenGL ES

To the programmer, OpenGL ES is a set of commands that allow the specification
of geometric objects in two or three dimensions, together with commands that
control how these objects are rendered into the framebuffer. OpenGL ES provides
an immediate-mode interface, meaning that specifying an object causes it to be
drawn.

A typical program that uses OpenGL ES begins with calls to open a window
into the framebuffer into which the program will draw. Then,calls are made to
allocate an OpenGL ES context and associate it with the window. These steps may
be performed using a companion API such as the Khronos NativePlatform Graph-
ics Interface (EGL), and are documented separately. Once a context is allocated,
the programmer is free to issue OpenGL ES commands. Some calls are used to
draw simple geometric objects (i.e. points, line segments,and polygons), while
others affect the rendering of these primitives including how they are lit or colored
and how they are mapped from the user’s two- or three-dimensional model space
to the two-dimensional screen. There are also calls which operate directly on the
framebuffer, such as reading pixels.

Version 1.1.10 (DRAFT - March 31, 2007)

2.4. BASIC GL OPERATION 9

Letter CorrespondingGL Type

i int
x fixed
f float

ub ubyte
ui uint

Table 2.1: Correspondence of command suffix letters to GL argument types. Refer
to Table 2.2 for definitions of the GL types.

For example,

void Normal3{xf}(T arg);

indicates the two declarations

void Normal3f(float arg1, float arg2, float arg3);
void Normal3x(fixed arg1, fixed arg2, fixed arg3);

Arguments whose type is fixed (i.e. not indicated by a suffix onthe command)
are of one of the 13 types (or pointers to one of these) summarized in Table 2.2.

The mapping of GL data types to data types of a specific language binding are
part of the language binding definition and may be platform-dependent. Type con-
version and type promotion behavior when mixing actual and formal arguments of
different data types are specific to the language binding andplatform. For exam-
ple, the C language includes automatic conversion between integer and floating-
point data types, but does not include automatic conversionbetween theint and
fixed, or float andfixed GL types since thefixed data type is not a dis-
tinct built-in type. Regardless of language binding, theenum type converts to
fixed-point without scaling, and integer types are converted to fixed-point by mul-
tiplying by 216.

2.4 Basic GL Operation

Figure 2.1 shows a schematic diagram of the GL. Commands enter the GL on the
left. Some commands specify geometric objects to be drawn while others control
how the objects are handled by the various stages.

The first stage operates on geometric primitives described by vertices: points,
line segments, and triangles. In this stage vertices are transformed and lit, and

Version 1.1.10 (DRAFT - March 31, 2007)

2.4. BASIC GL OPERATION 10

GL Type Minimum Description
Bit Width

boolean 1 Boolean
byte 8 Signed binary integer
ubyte 8 Unsigned binary integer
short 16 Signed 2’s complement binary integer
ushort 16 Unsigned binary integer
int 32 Signed 2’s complement binary integer
uint 32 Unsigned binary integer
fixed 32 Signed 2’s complement 16.16 scaled

integer
clampx 32 16.16 scaled integer clamped to[0, 1]

sizei 32 Non-negative binary integer size
enum 32 Enumerated binary integer value
intptr ptrbits Signed 2’s complement binary integer
sizeiptr ptrbits Non-negative binary integer size
bitfield 32 Bit field
float 32 Floating-point value
clampf 32 Floating-point value clamped to[0, 1]

Table 2.2: GL data types. GL types are not C types. Thus, for example, GL
type int is referred to asGLint outside this document, and is not necessarily
equivalent to the C typeint. An implementation may use more bits than the
number indicated in the table to represent a GL type. Correctinterpretation of
integer values outside the minimum range is not required, however.
ptrbits is the number of bits required to represent a pointer type; inother words,
typesintptr andsizeiptrmust be sufficiently large as to store any address.

Version 1.1.10 (DRAFT - March 31, 2007)

2.6. PRIMITIVES AND VERTICES 13

Error Description Offending com-
mand ignored?

INVALID ENUM enum argument out of range Yes
INVALID VALUE Numeric argument out of range Yes
INVALID OPERATION Operation illegal in current state Yes
STACK OVERFLOW Command would cause a stack

overflow
Yes

STACK UNDERFLOW Command would cause a stack
underflow

Yes

OUT OF MEMORY Not enough memory left to exe-
cute command

Unknown

Table 2.3: Summary of GL errors

Finally, if memory is exhausted as a side effect of the execution of a command,
the errorOUT OF MEMORY may be generated. Otherwise errors are generated only
for conditions that are explicitly described in this specification.

2.6 Primitives and Vertices

In the GL, geometric objects are drawn by specifying a seriesof coordinate sets
that include vertices and optionally normals, texture coordinates, and colors. Co-
ordinate sets are specified using vertex arrays (see section2.8). There are seven
geometric objects that are drawn this way: points (including point sprites), con-
nected line segments (line strips), line segment loops, separated line segments,
triangle strips, triangle fans, and separated triangles.

Each vertex is specified with two, three, or four coordinates. In addition, a
current normal, multiplecurrent texture coordinate sets, andcurrent colormay be
used in processing each vertex. Normals are used by the GL in lighting calcula-
tions; the current normal is a three-dimensional vector that may be set by sending
three coordinates that specify it. Texture coordinates determine how a texture im-
age is mapped onto a primitive. Multiple sets of texture coordinates may be used
to specify how multiple texture images are mapped onto a primitive. The number
of texture units supported is implementation dependent butmust be at least two.
The number of texture units supported can be obtained by querying the value of
MAX TEXTURE UNITS.

A color is associated with each vertex. This color is either based on the current
color or produced by lighting, depending on whether or not lighting is enabled.

Version 1.1.10 (DRAFT - March 31, 2007)

2.6. PRIMITIVES AND VERTICES 14

Texture coordinates are similarly associated with each vertex. Multiple sets of
texture coordinates may be associated with a vertex. Figure2.2 summarizes the as-
sociation of auxiliary data with a transformed vertex to produce aprocessed vertex.

The current values are part of GL state. Vertices, normals, and texture co-
ordinates are transformed. Color may be affected or replaced by lighting. The
processing indicated for each current value is applied for each vertex that is sent to
the GL.

The methods by which vertices, normals, texture coordinates, and color are sent
to the GL, as well as how normals are transformed and how vertices are mapped to
the two-dimensional screen, are discussed later.

Before color has been assigned to a vertex, the state required by a vertex is the
vertex’s coordinates, its normal, the current material properties (see section 2.12.2),
and its multiple texture coordinate sets. Because color assignment is done vertex-
by-vertex, a processed vertex comprises the vertex’s coordinates, its assigned color,
and its multiple texture coordinate sets.

Figure 2.3 shows the sequence of operations that builds aprimitive (point, line
segment, or triangle) from a sequence of vertices. After a primitive is formed, it
is clipped to a viewing volume. This may alter the primitive by altering vertex
coordinates, texture coordinates, and color. In the case of line and triangle primi-
tives, clipping may insert new vertices into the primitive.The vertices defining a
primitive to be rasterized have texture coordinates and color associated with them.

2.6.1 Primitive Types

A sequence of vertices is passed to the GL using the commandsDrawArrays or
DrawElements (see section 2.8). There is no limit to the number of verticesthat
may be specified, other than the size of the vertex arrays.

The modeparameter of these commands determines the type of primitives to
be drawn using these coordinate sets. The types, and the correspondingmode
parameters, are:

Points. A series of individual points may be specified withmodePOINTS.
Each vertex defines a separate point or point sprite.

Line Strips. A series of one or more connected line segments may be specified
with modeLINE STRIP. At least two vertices must be provided. In this case, the
first vertex specifies the first segment’s start point while the second vertex specifies
the first segment’s endpoint and the second segment’s start point. In general, the
ith vertex (fori > 1) specifies the beginning of theith segment and the end of the
i − 1st. The last vertex specifies the end of the last segment. If only one vertex is
specified, then no primitive is generated.

Version 1.1.10 (DRAFT - March 31, 2007)

2.8. VERTEX ARRAYS 19

current texture coordinatess, t, r, andq. The initial current color is(R,G,B,A) =
(1, 1, 1, 1). The initial current normal has coordinates(0, 0, 1). The initial values
of s, t, andr of the current texture coordinates for each texture unit arezero, and
the initial value ofq is one.

2.8 Vertex Arrays

Vertex data is placed into arrays stored in the client’s address space (described
here) or in the server’s address space (described in section2.9). Blocks of data in
these arrays may then be used to specify multiple geometric primitives through the
execution of a single GL command. The client may specify up tofour plus the value
of MAX TEXTURE UNITS arrays: one each to store vertex coordinates, normals,
colors, point sizes, and one or more texture coordinate sets. The commands

void VertexPointer(int size, enum type, sizei stride,
void *pointer);

void NormalPointer(enum type, sizei stride,
void *pointer);

void ColorPointer(int size, enum type, sizei stride,
void *pointer);

void PointSizePointerOES(enum type, sizei stride,
void *pointer);

void TexCoordPointer(int size, enum type, sizei stride,
void *pointer);

describe the locations and organizations of these arrays. For each command,type
specifies the data type of the values stored in the array.size, when present, indicates
the number of values per vertex that are stored in the array. Because normals are
always specified with three values and point sizes are alwaysspecified with one
value,NormalPointer andPointSizePointerOEShave nosizeargument. Table
2.4 indicates the allowable values forsizeand type (when present). Fortype the
valuesBYTE, UNSIGNED BYTE, SHORT, FIXED, andFLOAT, indicate typesbyte,
ubyte, short, fixed, andfloat, respectively. The errorINVALID VALUE is
generated ifsizeis specified with a value other than that indicated in the table.

The one, two, three, or four values in an array that correspond to a single vertex
comprise an arrayelement. The values within each array element are stored se-
quentially in memory. Ifstride is specified as zero, then array elements are stored

Version 1.1.10 (DRAFT - March 31, 2007)

2.8. VERTEX ARRAYS 21

When an array elementi is transferred to the GL by theDrawArrays or
DrawElementscommands, each enabled array is treated differently.

For the vertex array, ifsizeis two then thex andy coordinates of the vertex are
specified by the array; thez andw coordinates are implicitly set to zero and one,
respectively. Ifsizeis three thenx, y, andz are specified andw is implicitly set to
one. Ifsizeis four then all coordinates are specified, allowing the definition of an
arbitrary point in projective space.

For the color array, ifsizeis three then theA component is implicitly set to 1.
If sizeis four then all components are specified. If the color array is not enabled,
then the current color defined by theColor commands is used.

For the normal array, all three coordinates are always specified. Byte, short,
or integer values are converted to floating-point values as indicated for the corre-
sponding (signed) type in table 2.7. If the normal array is not enabled, then the
current normal defined by theNormal commands is used.

For the point size array, the single size is always specified.If the point size ar-
ray is not enabled, then the current point size defined byPointSize(see section 3.3)
is used.

For the texture coordinate arrays, ifsizeis two then thes andt coordinates are
specified and ther andq coordinates are implicitly set to zero and one, respectively.
If sizeis three thens, t, andr are specified andq is implicitly set to one. Ifsizeis
four then all coordinates are specified. If a texture coordinate array is not enabled,
then the current texture coordinate defined by theMultiTexCoord commands is
used.

The command

void DrawArrays (enum mode, int first, sizei count);

constructs a sequence of geometric primitives by successively transferring ele-
mentsfirst throughfirst + count − 1 of each enabled array to the GL.mode
specifies what kind of primitives are constructed, as definedin section 2.6.1.

The current color, normal, point size, and texture coordinates each become
indeterminate after the execution ofDrawArrays , if the corresponding array is
enabled. Current values corresponding to disabled arrays are not modified by the
execution ofDrawArrays .

Specifying first < 0 results in undefined behavior. Generating the error
INVALID VALUE is recommended in this case.

The command

void DrawElements(enum mode, sizei count, enum type,
void *indices);

Version 1.1.10 (DRAFT - March 31, 2007)

2.9. BUFFER OBJECTS 22

constructs a sequence of geometric primitives by successively transferring the
count elements whose indices are stored inindices to the GL. Theith element
transferred byDrawElementswill be taken from elementindices[i] of each en-
abled array.typemust be one ofUNSIGNED BYTE orUNSIGNED SHORT, indicating
that the values inindicesare indices of GL typeubyte or ushort, respectively.
modespecifies what kind of primitives are constructed; it accepts the same values
as themodeparameter ofDrawArrays .

The current color, normal, point size, and texture coordinates are each indeter-
minate after the execution ofDrawElements, if the corresponding array is enabled.
Current values corresponding to disabled arrays are not modified by the execution
of DrawElements.

If the number of supported texture units (the value ofMAX TEXTURE UNITS) is
k, then the client state required to implement vertex arrays consists of an integer for
the client active texture unit selector,4+k boolean values,4+k memory pointers,
4 + k integer stride values,4 + k symbolic constants representing array types, and
2 + k integers representing values per element. In the initial state, the client active
texture unit selector isTEXTURE0, the boolean values are each false, the memory
pointers are each null, the strides are each zero, and the integers representing values
per element are each four. The array types are eachFLOAT for the Common profile
andFIXED for the Common-Lite profile.

2.9 Buffer Objects

The vertex data arrays described in section 2.8 are stored inclient memory. It is
sometimes desirable to store frequently used client data, such as vertex array data,
in high-performance server memory. GL buffer objects provide a mechanism that
clients can use to allocate, initialize, and render from such memory.

The name space for buffer objects is the unsigned integers, with zero re-
served for the GL. A buffer object is created by binding an unused name to
ARRAY BUFFER. The binding is effected by calling

void BindBuffer (enum target, uint buffer);

with targetset toARRAY BUFFER andbufferset to the unused name. The resulting
buffer object is a new state vector, initialized with a zero-sized memory buffer, and
comprising the state values listed in Table 2.5.

BindBuffer may also be used to bind an existing buffer object. If the bindis
successful no change is made to the state of the newly bound buffer object, and any
previous binding totarget is broken.

Version 1.1.10 (DRAFT - March 31, 2007)

2.9. BUFFER OBJECTS 25

2.9.1 Vertex Arrays in Buffer Objects

Blocks of vertex array data may be stored in buffer objects with the same for-
mat and layout options supported for client-side vertex arrays. However, it is ex-
pected that GL implementations will (at minimum) be optimized for data with all
components represented asfloat (for the Common profile) orfixed (for the
Common-Lite profile), as well as for color data with components represented as
ubyte.

The client state associated with each vertex array type includes a buffer object
binding point. The commands that specify the locations and organizationsof vertex
arrays copy the buffer object name that is bound toARRAY BUFFER to the binding
point corresponding to the vertex array of the type being specified. For example,
the NormalPointer command copies the value ofARRAY BUFFER BINDING (the
queriable name of the buffer binding corresponding to the targetARRAY BUFFER)
to the client state variableNORMAL ARRAY BUFFER BINDING.

Rendering commandsDrawArrays andDrawElementsoperate as previously
defined, except that data for enabled vertexarrays are sourced from buffers if the
array’s buffer binding is non-zero. When an array is sourcedfrom a buffer object,
the pointer value of that array is used to compute an offset, in basic machine units,
into the data store of the buffer object. This offset is computed by subtracting a
null pointer from the pointer value, where both pointers aretreated as pointers to
basic machine units2.

It is acceptable for vertexarrays to be sourced from any combination of client
memory and various buffer objects during a single renderingoperation.

2.9.2 Array Indices in Buffer Objects

Blocks of array indices may be stored in buffer objects with the same format op-
tions that are supported for client-side index arrays. Initially zero is bound to
ELEMENT ARRAY BUFFER, indicating thatDrawElements is to source its indices
from arrays passed as theindicesparameters.

A buffer object is bound toELEMENT ARRAY BUFFER by calling BindBuffer
with targetset toELEMENT ARRAY BUFFER, andbufferset to the name of the buffer
object. If no corresponding buffer object exists, one is initialized as defined in
section 2.9.

The commandsBufferData and BufferSubData may be used withtarget

2To resume using client-side vertex arrays after a buffer object has been bound, callBind-
Buffer (ARRAY BUFFER,0) and then specify the client vertex array pointer using the appropriate
command from section 2.8.

Version 1.1.10 (DRAFT - March 31, 2007)

2.10. COORDINATE TRANSFORMATIONS 33

and

void Disable(enum target);

with target equal toRESCALE NORMAL or NORMALIZE. This requires two bits of
state. The initial state is for normals not to be rescaled or normalized.

If the model-view matrix isM , then the normal is transformed to eye coordi-
nates by:3

(nx
′ ny

′ nz
′ q′) = (nx ny nz q) · M−1

where, if









x
y
z
w









are the associated vertex coordinates, then

q =























0, w = 0,

−(nx ny nz)





x
y
z





w
, w 6= 0

(2.1)

Implementations may choose instead to transform(nx ny nz) to eye coor-
dinates using

(nx
′ ny

′ nz
′) = (nx ny nz) · Mu

−1

whereMu is the upper leftmost 3x3 matrix taken fromM .
Rescale multiplies the transformed normals by a scale factor

(nx
′′ ny

′′ nz
′′) = f (nx

′ ny
′ nz

′)

If rescaling is disabled, thenf = 1. If rescaling is enabled, thenf is computed as

f =
1√

m31
2 + m32

2 + m33
2

mij denotes the matrix element in rowi and columnj of M−1, numbering the
topmost row of the matrix as row 1 and the leftmost column as column 1.

Note that if the normals sent to GL were unit length and the model-view matrix
uniformly scales space, then rescale makes the transformednormals unit length.

Alternatively, an implementation may choose f as

3Here, normals are treated as row vectors and transformed by postmultiplication by the inverse of
the transformation matrix. If normals are treated as column vectors, then the transformation would
instead be performed by premultiplying the normal by the inverse transpose,M−T .

Version 1.1.10 (DRAFT - March 31, 2007)

2.11. CLIPPING 35

The value of the first argument,p, is a symbolic constant,CLIP PLANEi, wherei
is an integer between 0 andn − 1, indicating one ofn client-defined clip planes.
eqn is an array of four values. These are the coefficients of a plane equation in
object coordinates:p1, p2, p3, andp4 (in that order). The inverse of the current
model-view matrix is applied to these coefficients, at the time they are specified,
yielding

(p′1 p′2 p′3 p′4) = (p1 p2 p3 p4)M−1

(whereM is the current model-view matrix; the resulting plane equation is unde-
fined if M is singular and may be inaccurate ifM is poorly-conditioned) to obtain
the plane equation coefficients in eye coordinates. All points with eye coordinates
(xe ye ze we)T that satisfy

(p′1 p′2 p′3 p′4)









xe

ye

ze

we









≥ 0

lie in the half-space defined by the plane; points that do not satisfy this condition
do not lie in the half-space.

Client-defined clip planes are enabled with the genericEnable command and
disabled with theDisable command. The value of the argument to either com-
mand isCLIP PLANEi wherei is an integer between 0 andn; specifying a value
of i enables or disables the plane equation with indexi. The constants obey
CLIP PLANEi = CLIP PLANE0 + i.

If the primitive under consideration is a point, then clipping passes it un-
changed if it lies within the clip volume; otherwise, it is discarded.

If the primitive is a point sprite, it is normally clipped as apoint. If the point
would normally be clipped, but some of the fragments resulting from point sprite
rasterization would otherwise be visible, implementations may choose to scissor
fragments resulting from rasterization, instead of clipping the entire primitive4.

If the primitive is a line segment, then clipping does nothing to it if it lies en-
tirely within the clip volume and discards it if it lies entirely outside the volume.
If part of the line segment lies in the volume and part lies outside, then the line
segment is clipped and new vertex coordinates are computed for one or both ver-
tices. A clipped line segment endpoint lies on both the original line segment and
the boundary of the clip volume.

This clipping produces a value,0 ≤ t ≤ 1, for each clipped vertex. If the
coordinates of a clipped vertex areP and the original vertices’ coordinates areP1

4This results in smooth transitions as point sprites move past the edge of the clip volume, while
the normal behavior causes “popping” of the point sprite.

Version 1.1.10 (DRAFT - March 31, 2007)

2.12. COLORS AND COLORING 37

[0,2k−1]

float

Convert to
[0.0,1.0]

[−2k,2k−1] Convert to
[−1.0,1.0]

Current
RGBA
Color Lighting

Clamp to
[0.0, 1.0]

Flatshade?

Primitive
Clipping

Color
Clipping

Convert to
fixed−point

Figure 2.6. Processing of colors. See Table 2.7 for the interpretation ofk.

GL Type Conversion

ubyte c/(28 − 1)

byte (2c + 1)/(28 − 1)

ushort c/(216 − 1)

short (2c + 1)/(216 − 1)

fixed c/216

float c

Table 2.7: Component conversions. Color and normalcomponents (c) are con-
verted to an internal floating-point representation (f), using the equations in this
table. All arithmetic is done in the internal floating-pointformat. These conver-
sions apply to components specified as parameters to GL commands and to com-
ponents in pixel data. The equations remain the same even if the implemented
ranges of the GL data types are greater than the minimum required ranges. (Refer
to table 2.2)

Version 1.1.10 (DRAFT - March 31, 2007)

2.12. COLORS AND COLORING 38

of the primitive are to have the same colors. Finally, if a primitive is clipped, then
colors (and texture coordinates) must be computed at the vertices introduced or
modified by clipping.

2.12.1 Lighting

GL lighting computes colors for each vertex sent to the GL. This is accomplished
by applying an equation defined by a client-specified lighting model to a collection
of parameters that can include the vertex coordinates, the coordinates of one or
more light sources, the current normal, and parameters defining the characteristics
of the light sources and a current material.

Lighting is turned on or off using the genericEnable or Disable commands
with the symbolic valueLIGHTING. If lighting is off, the current color is assigned
to the vertex color. If lighting is on, the color computedfrom the current lighting
parameters is assigned to the vertex color.

Lighting Operation

A lighting parameter is of one of five types: color, position,direction, real, or
boolean. A color parameter consists of four floating-point values, one for each of
R, G, B, and A, in that order. There are no restrictions on the allowable values for
these parameters. A position parameter consists of four floating-point coordinates
(x, y, z, and w) that specify a position in object coordinates (w may be zero,
indicating a point at infinity in the direction given byx, y, andz). A direction
parameter consists of three floating-point coordinates (x, y, andz) that specify a
direction in object coordinates. A real parameter is one floating-point value. The
various values and their types are summarized in Table 2.8. The result of a lighting
computation is undefined if a value for a parameter is specified that is outside the
range given for that parameter in the table.

There aren light sources, indexed byi = 0, . . . , n−1. (n is an implementation
dependent maximum that must be at least 8.) Note that the default values fordcli

andscli differ for i = 0 andi > 0.
Before specifying the way that lighting computes colors, weintroduce oper-

ators and notation that simplify the expressions involved.If c1 andc2 are col-
ors without alpha wherec1 = (r1, g1, b1) and c2 = (r2, g2, b2), then define
c1 ∗ c2 = (r1r2, g1g2, b1b2). Addition of colors is accomplished by addition of
the components. Multiplication of colors by a scalar means multiplying each com-
ponent by that scalar. Ifd1 andd2 are directions, then define

d1 ⊙ d2 = max{d1 · d2, 0}.

Version 1.1.10 (DRAFT - March 31, 2007)

2.12. COLORS AND COLORING 41

spoti =











(
−−−→
PpliV ⊙ ŝdli)

srli , crli 6= 180.0,
−−−→
PpliV ⊙ ŝdli ≥ cos(crli),

0.0, crli 6= 180.0,
−−−→
PpliV ⊙ ŝdli < cos(crli),

1.0, crli = 180.0.

(2.5)

All computations are carried out in eye coordinates. Lighting is computed for a
viewer situated at(0, 0, −∞); the OpenGL ES lighting model does not support
a local viewer.

The value of A produced by lighting is the alpha value associated withdcm.
Results of lighting are undefined if thewe coordinate (w in eye coordinates) of

V is zero.
Lighting may operate intwo-sidedmode (tbs = TRUE), in which afront color

and aback color are computed using the same material parameters (there is no
way to specify different front and back material parametersin OpenGL ES), but
replacingn with −n in the case of the back color. If tbs = FALSE, then the back
color and front color are both assigned the color computed using n.

The selection between back color and front color depends on the primitive of
which the vertex being lit is a part. If the primitive is a point or a line segment,
the front color is always selected. If it is a polygon, then the selection is based on
the sign of the (clipped or unclipped) polygon’s signed areacomputed in window
coordinates. One way to compute this area is

a =
1

2

n−1
∑

i=0

xi
wyi⊕1

w − xi⊕1
w yi

w (2.6)

wherexi
w and yi

w are thex and y window coordinates of theith vertex of the
n-vertex polygon (vertices are numbered starting at zero forpurposes of this com-
putation) andi⊕ 1 is (i + 1) mod n. The interpretation of the sign of this value is
controlled with

void FrontFace(enum dir);

Settingdir to CCW (corresponding to counter-clockwise orientation of the projected
polygon in window coordinates) indicates that ifa ≤ 0, then the color of each
vertex of the polygon becomes the back color computed for that vertex while if
a > 0, then the front color is selected. Ifdir is CW, thena is replaced by−a in the
above inequalities. This requires one bit of state; initially, it indicatesCCW.

2.12.2 Lighting Parameter Specification

Lighting parameters are divided into three categories: material parameters, light
source parameters, and lighting model parameters (see Table 2.8). Sets of lighting
parameters are specified with

Version 1.1.10 (DRAFT - March 31, 2007)

Chapter 3

Rasterization

Rasterization is the process by which a primitive is converted to a two-dimensional
image. Each point of this image contains such information ascolor and depth.
Thus, rasterizing a primitive consists of two parts. The first is to determine which
squares of an integer grid in window coordinates are occupied by the primitive.
The second is assigning a color and a depth value to each such square. The results
of this process are passed on to the next stage of the GL (per-fragment operations),
which uses the information to update the appropriate locations in the framebuffer.
Figure 3.1 diagrams the rasterization process.

A grid square along with its parameters of assigned colors,z (depth), and tex-
ture coordinates is called afragment; the parameters are collectively dubbed the
fragment’sassociated data. A fragment is located by its lower left corner, which
lies on integer grid coordinates. Rasterization operations also refer to a fragment’s
center, which is offset by(1/2, 1/2) from its lower left corner (and so lies on
half-integer coordinates).

Grid squares need not actually be square in the GL. Rasterization rules are not
affected by the actual aspect ratio of the grid squares. Display of non-square grids,
however, will cause rasterized points and line segments to appear fatter in one
direction than the other. We assume that fragments are square, since it simplifies
antialiasing and texturing.

Several factors affect rasterization. Points may be given differing diameters
and line segments differing widths. A point or line segment may be antialiased
using pixel coverage values (see section 3.2), but polygon antialiasing using cov-
erage values is not supported. Multisampling must be used torasterize antialiased
polygons (see section 3.2.1).

47

3.1. INVARIANCE 48

Figure 3.1. Rasterization.

3.1 Invariance

Consider a primitivep′ obtained by translating a primitivep through an offset(x, y)
in window coordinates, wherex andy are integers. As long as neitherp′ nor p is
clipped, it must be the case that each fragmentf ′ produced fromp′ is identical to
a corresponding fragmentf from p except that the center off ′ is offset by(x, y)
from the center off .

3.2 Antialiasing

Antialiasing of a point or line is effected as follows: the R, G, and B values of the
rasterized fragment are left unaffected, but the A value is multiplied by a floating-
point value in the range[0, 1] that describes a fragment’s screen pixel coverage. The
per-fragment stage of the GL can be set up to use the A value to blend the incoming
fragment with the corresponding pixel already present in the framebuffer.

The details of how antialiased fragment coverage values arecomputed are dif-
ficult to specify in general. The reason is that high-qualityantialiasing may take
into account perceptual issues as well as characteristics of the monitor on which
the contents of the framebuffer are displayed. Such detailscannot be addressed
within the scope of this document. Further, the coverage value computed for a
fragment of some primitive may depend on the primitive’s relationship to a num-
ber of grid squares neighboring the one corresponding to thefragment, and not just

Version 1.1.10 (DRAFT - March 31, 2007)

3.3. POINTS 51

If MULTISAMPLE is enabled, multisample rasterization of all primitives differs
substantially from single-sample rasterization. It is understood that each pixel in
the framebuffer hasSAMPLES locations associated with it. These locations are
exact positions, rather than regions or areas, and each is referred to as a sample
point. The sample points associated with a pixel may be located inside or outside
of the unit square that is considered to bound the pixel. Furthermore, the relative
locations of sample points may be identical for each pixel inthe framebuffer, or
they may differ.

If the sample locations differ per pixel, they should be aligned to window, not
screen, boundaries. Otherwise rendering results will be window-position specific.
The invariance requirement described in section 3.1 is relaxed for all multisample
rasterization, because the sample locations may be a function of pixel location.

It is not possible to query the actual sample locations of a pixel.

3.3 Points

The rasterization of points is controlled with

void PointSize(float size);
void PointSizex(fixed size);

sizespecifies the requested size of a point. The default value is 1.0. A value less
than or equal to zero results in the errorINVALID VALUE.

The requested point size is multiplied with a distance attenuation factor,
clamped to a point size range specified withPointParameter (see below), and
further clamped to the implementation-dependent point size range to produce the
derived point size:

derived size = impl clamp

(

user clamp

(

size√
a + b ∗ d + c ∗ d2

))

whered is the eye-coordinate distance from the eye,(0, 0, 0, 1) in eye coordinates,
to the vertex, anda, b, andc are distance attenuation function coefficients.

Point sprites are enabled or disabled by callingEnable or Disable with the
symbolic constantPOINT SPRITE OES. The default state is for point sprites to be
disabled. When point sprites are enabled, the state of the point antialiasing enable
is ignored.

The point sprite texture coordinate replacement mode is setwith the commands

void TexEnv{ixf}(enum target, enum pname, T param);

Version 1.1.10 (DRAFT - March 31, 2007)

3.3. POINTS 53

integers. This(x, y) address, along with data derived from the data associated
with the vertex corresponding to the point, is sent as a single fragment to the per-
fragment stage of the GL.

The effect of a point width other than1.0 depends on the state of point an-
tialiasing and point sprites.

Non-Antialiased Points

If antialiasing and point sprites are disabled, the actual width is deter-
mined by rounding the supplied width to the nearest integer,then clamp-
ing it to the implementation-dependent maximum non-antialiased point width.
This implementation-dependent value must be no less than the implementation-
dependent maximum antialiased point width, rounded to the nearest integer value,
and in any event no less than1. If rounding the specified width results in the value
0, then it is as if the value were1. If the resulting width is odd, then the point

(x, y) = (⌊xw⌋ +
1

2
, ⌊yw⌋ +

1

2
)

is computed from the vertex’sxw andyw, and a square grid of the odd width cen-
tered at(x, y) defines the centers of the rasterized fragments (recall thatfragment
centers lie at half-integer window coordinate values). If the width is even, then the
center point is

(x, y) = (⌊xw +
1

2
⌋, ⌊yw +

1

2
⌋);

the rasterized fragment centers are the half-integer window coordinate values
within the square of the even width centered on(x, y). See figure 3.2.

All fragments produced in rasterizing a non-antialiased point are assigned the
same associated data, which are those of the vertex corresponding to the point, with
texture coordinatess, t, andr replaced withs/q, t/q, andr/q, respectively. Ifq is
less than or equal to zero, the results are undefined.

Antialiased Points

If antialiasing is enabled and point sprites are disabled, then point rasterization
produces a fragment for each fragment square that intersects the region lying within
the circle having diameter equal to the current point width and centered at the
point’s (xw, yw) (figure 3.3). The coverage value for each fragment is the window
coordinate area of the intersection of the circular region with the corresponding
fragment square (but see section 3.2). This value is saved and used in the final
step of rasterization (section 3.9). Other associated datafor each fragment are
determined in the same fashion as for non-antialiased points.

Version 1.1.10 (DRAFT - March 31, 2007)

3.3. POINTS 54

00000
00000
00000
00000
00000

00000
00000
00000
00000
00000

Odd Width Even Width

3.5 4.5 5.52.51.5 3.5 4.5 5.52.51.5

1.5

2.5

3.5

4.5

0.50.5

0.5

5.5

Figure 3.2. Rasterization of non-antialiased wide points.The crosses show fragment
centers produced by rasterization for any point that lies within the shaded region.
The dotted grid lines lie on half-integer coordinates.

Not all widths need be supported when point antialiasing is on, but the width
1.0 must be provided. If an unsupported width is requested, the nearest supported
width is used instead. The range of supported widths and the width of evenly-
spaced gradations within that range are implementation dependent. The range and
gradations may be obtained using the query mechanism described in Chapter 6. If,
for instance, the width range is from 0.1 to 2.0 and the gradation width is 0.1, then
the widths0.1, 0.2, . . . , 1.9, 2.0 are supported.

Point Sprites

When point sprites are enabled, then point rasterization produces a fragment
for each framebuffer pixel whose center lies inside a squarecentered at the point’s
(xw, yw), with side length equal to the current point size.

Associated data for each fragment are determined in the samefash-
ion as for non-antialiased points. However, for each texture unit where
COORD REPLACE OES is TRUE, texture coordinates are replaced with point sprite
texture coordinates. Thes coordinate varies from 0 to 1 across the point horizon-
tally left-to-right, while thet coordinate varies from 0 to 1 vertically top-to-bottom.
Ther andq coordinates are replaced with the constants 0 and 1, respectively.

Version 1.1.10 (DRAFT - March 31, 2007)

3.5. POLYGONS 62

3.4.3 Line Rasterization State

The state required for line rasterization consists of the floating-point line width and
a bit indicating whether line antialiasing is on or off. The initial value of the line
width is1.0 and the initial state of line segment antialiasing is disabled.

3.4.4 Line Multisample Rasterization

If MULTISAMPLE is enabled, and the value ofSAMPLE BUFFERS is one, then lines
are rasterized using the following algorithm, regardless of whether line antialiasing
(LINE SMOOTH) is enabled or disabled. Line rasterization produces a fragment for
each framebuffer pixel with one or more sample points that intersect the rectangular
region that is described in theAntialiasing portion of section 3.4.2 (Other Line
Segment Features).

Coverage bits that correspond to sample points that intersect a retained rectan-
gle are 1, other coverage bits are 0. Each color, depth, and set of texture coordinates
is produced by substituting the corresponding sample location into equation 3.3,
then using the result to evaluate equation 3.4. An implementation may choose to
assign the same color value and the same set of texture coordinates to more than
one sample. The color value and the set of texture coordinates need not be evalu-
ated at the same location.

Line width range and number of gradations are equivalent to those supported
for antialiased lines.

3.5 Polygons

A polygon results from a triangle strip, triangle fan, or series of separate trian-
gles. Like points and line segments, polygon rasterizationis controlled by several
variables.

3.5.1 Basic Polygon Rasterization

The first step of polygon rasterization is to determine if thepolygon isback facing
or front facing. This determination is made by examining the sign of the areacom-
puted by equation 2.6 of section 2.12.1 (including the possible reversal of this sign
as indicated by the last call toFrontFace). If this sign is positive, the polygon is
front facing; otherwise, it is back facing. This determination is used inconjunction
with theCullFaceenable bit and mode value to decide whether or not a particular
polygon is rasterized. TheCullFacemode is set by calling

void CullFace(enum mode);

Version 1.1.10 (DRAFT - March 31, 2007)

3.5. POLYGONS 64

Just as with line segment rasterization, equation 3.6 may beapproximated by

f = afa/αa + bfb/αb + cfc/αc;

this may yield acceptable results for color values (itmustbe used for depth val-
ues), but will normally lead to unacceptable distortion effects if used for texture
coordinates.

3.5.2 Depth Offset

The depth values of all fragments generated by the rasterization of a polygon may
be offset by a single value that is computed for that polygon.The function that
determines this value is specified by calling

void PolygonOffset(float factor, float units);
void PolygonOffsetx(fixed factor, fixed units);

factor scales the maximum depth slope of the polygon, andunits scales an im-
plementation dependent constant that relates to the usableresolution of the depth
buffer. The resulting values are summed to produce the polygon offset value. Both
factor andunitsmay be either positive or negative.

The maximum depth slopem of a triangle is

m =

√

(

∂zw

∂xw

)2

+

(

∂zw

∂yw

)2

(3.7)

where(xw, yw, zw) is a point on the triangle.m may be approximated as

m = max

{∣

∣

∣

∣

∂zw

∂xw

∣

∣

∣

∣

,

∣

∣

∣

∣

∂zw

∂yw

∣

∣

∣

∣

}

. (3.8)

The minimum resolvable differencer is an implementation-dependent con-
stant. It is the smallest difference in window coordinatez values that is guaranteed
to remain distinct throughout polygon rasterization and inthe depth buffer. All
pairs of fragments generated by the rasterization of two polygons with otherwise
identical vertices, butzw values that differ byr, will have distinct depth values.

The offset valueo for a polygon is

o = m ∗ factor + r ∗ units. (3.9)

Version 1.1.10 (DRAFT - March 31, 2007)

3.6. PIXEL RECTANGLES 65

m is computed as described above, as a function of depth valuesin the range [0,1],
ando is applied to depth values in the same range.

Boolean state valuePOLYGON OFFSET FILL determines whethero is applied
during the rasterization of polygons. This boolean state value is enabled and dis-
abled using the commandsEnableandDisable. If POLYGON OFFSET FILL is en-
abled,o is added to the depth value of each fragment produced by the rasterization
of a polygon.

Fragment depth values are always limited to the range [0,1],either by clamping
after offset addition is performed (preferred), or by clamping the vertex values used
in the rasterization of the polygon.

3.5.3 Polygon Multisample Rasterization

If MULTISAMPLE is enabled and the value ofSAMPLE BUFFERS is one, then poly-
gons are rasterized using the following algorithm. Polygonrasterization produces
a fragment for each framebuffer pixel with one or more samplepoints that satisfy
the point sampling criteria described in section 3.5.1, including the special treat-
ment for sample points that lie on a polygon boundary edge. Ifa polygon is culled,
based on its orientation and theCullFace mode, then no fragments are produced
during rasterization.

Coverage bits that correspond to sample points that satisfythe point sampling
criteria are 1, other coverage bits are 0. Each color, depth,and set of texture co-
ordinates is produced by substituting the corresponding sample location into the
barycentric equations described in section 3.5.1, using equation 3.6 or its approx-
imation that omitsw components. An implementation may choose to assign the
same color value and the same set of texture coordinates to more than one sample
by barycentric evaluation using any location withinthe pixel including the frag-
ment center or one of the sample locations. The color value and the set of texture
coordinates need not be evaluated at the same location.

3.5.4 Polygon Rasterization State

The state required for polygon rasterization consists ofthe factor and bias values
of the polygon offset equation.The initial polygon offset factor and bias values
are both 0; initially polygon offset is disabled.

3.6 Pixel Rectangles

Rectangles of color values may be specified to the GL usingTexImage2D and
related commands described in section 3.7.1. Some of the parameters and opera-

Version 1.1.10 (DRAFT - March 31, 2007)

3.6. PIXEL RECTANGLES 68

typeParameter Corresponding Special
Token Name GL Data Type Interpretation

UNSIGNED BYTE ubyte No
UNSIGNED SHORT 5 6 5 ushort Yes
UNSIGNED SHORT 4 4 4 4 ushort Yes
UNSIGNED SHORT 5 5 5 1 ushort Yes

Table 3.2: TexImage2D and ReadPixelstype parameter values and the corre-
sponding GL data types. Refer to table 2.2 for definitions of GL data types. Special
interpretations are described near the end of section 3.6.2. ReadPixelsaccepts only
a subset of these types (see section 4.3.1).

Format Name Element Meaning and OrderTarget Buffer

ALPHA A Color
RGB R, G, B Color
RGBA R, G, B, A Color
LUMINANCE Luminance Color
LUMINANCE ALPHA Luminance, A Color

Table 3.3:TexImage2DandReadPixelsformats. The second column gives a de-
scription of and the number and order of elements in a group.ReadPixelsaccepts
only a subset of these formats (see section 4.3.1).

Format Type Bytes per Pixel

RGBA UNSIGNED BYTE 4
RGB UNSIGNED BYTE 3
RGBA UNSIGNED SHORT 4 4 4 4 2
RGBA UNSIGNED SHORT 5 5 5 1 2
RGB UNSIGNED SHORT 5 6 5 2
LUMINANCE ALPHA UNSIGNED BYTE 2
LUMINANCE UNSIGNED BYTE 1
ALPHA UNSIGNED BYTE 1

Table 3.4: Valid pixel format and type combinations.

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 74

represents each valuek/(2n − 1), wherek ∈ {0, 1, . . . , 2n − 1}, ask (e.g. 1.0 is
represented in binary as a string of all ones).

Thelevelargument toTexImage2Dis an integerlevel-of-detailnumber. Levels
of detail are discussed below, underMipmapping . The main texture image has a
level of detail number of 0. If a level-of-detail less than zero is specified, the error
INVALID VALUE is generated.

If the border argument to TexImage2D is not zero, then the error
INVALID VALUE is generated.

For non-zerowidth andheight, it must be the case that

ws = 2n (3.12)

hs = 2m (3.13)

for some integersn and m, where ws and hs are the specified imagewidth
and height. If any one of these relationships cannot be satisfied, then the error
INVALID VALUE is generated.

An image with zero width or height indicates the null texture. If the null texture
is specified for level-of-detail zero, it is as if texturing were disabled.

The maximum allowable width and height of a texture image must be at
least 2k for image arrays of level0 through k, wherek is the log base 2 of
MAX TEXTURE SIZE.

An implementation may allow an image array of level 0 to be created only if
that single image array can be supported. Additional constraints on the creation of
image arrays of level 1 or greater are described in more detail in section 3.7.9.

The image indicated to the GL by the image pointer is decoded and copied into
the GL’s internal memory.

We shall refer to the decoded image as thetexture array. A texture array has
width and height

wt = 2n

ht = 2m

wheren andm are defined in equations 3.12 and 3.13.
An element(i, j) of the texture array is called atexel. Thetexture valueused in

texturing a fragment is determined by that fragment’s associated(s, t) coordinates,
but does not necessarily correspond to any actual texel. See figure 3.8.

If the data argument ofTexImage2D is a null pointer (a zero-valued pointer
in the C implementation), a texture array is created with thespecifiedtarget, level,
internalformat, width, andheight, but with unspecified image contents. In this

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 77

Texture Format
Color Buffer A L LA RGB RGBA

A � – – – –
L – � – – –
LA � � � – –
RGB – � – � –
RGBA � � � � �

Table 3.9:CopyTexImageinternal format/color buffer combinations.

void CopyTexSubImage2D(enum target, int level,
int xoffset, int yoffset, int x, int y, sizei width,
sizei height);

respecify only a rectangular subregion of an existing texture array. No change
is made to theinternalformat, width, or height, parameters of the specified tex-
ture array, nor is any change made to texel values outside thespecified subre-
gion. Thetargetarguments ofTexSubImage2DandCopyTexSubImage2Dmust
beTEXTURE 2D. The level parameter of each command specifies the level of the
texture array that is modified. Iflevel is less than zero or greater than the base 2
logarithm of the maximum texture width or height, the errorINVALID VALUE is
generated.

TexSubImage2Dargumentswidth, height, format, type, anddata match the
corresponding arguments toTexImage2D, meaning that they are specified using
the same values, and have the same meanings.

CopyTexSubImage2Dargumentsx, y, width, and height match the corre-
sponding arguments toCopyTexImage2D. Each of theTexSubImagecommands
interprets and processes pixel groups in exactly the mannerof its TexImagecoun-
terpart, except that the assignment of R, G, B, and Apixel group values to the
texture components is controlled by theinternalformat of the texture array, not
by an argument to the command. The same constraints and errors apply to the
TexSubImagecommands’ argumentformatand theinternalformatof the texture
array being respecified as apply to theformatand internalformatarguments of its
TexImagecounterparts.

Argumentsxoffsetandyoffsetof TexSubImage2DandCopyTexSubImage2D
specify the lower left texel coordinates of awidth-wide byheight-high rectangular
subregion of the texture array, address as in figure 3.8. Taking ws andhs to be
the specified width and height of the texture array, and taking x, y, w, andh to
be thexoffset, yoffset, width, andheight argument values, any of the following

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 79

pixel transfer modes are ignored when decoding a compressedtexture image. If the
imageSizeparameter is not consistent with the format, dimensions, and contents of
the compressed image, anINVALID VALUE error results. If the compressed image
is not encoded according to the defined image format, the results of the call are
undefined.

Specific compressed internal formats may impose format-specific restrictions
on the use of the compressed image specification calls or parameters. For example,
the compressed image format might not allowwidthor heightvalues that are not a
multiple of 4. Any such restrictions will be documented in the extension specifica-
tion defining the compressed internal format; violating these restrictions will result
in anINVALID OPERATION error.

Any restrictions imposed by specific compressed internal formats will be in-
variant with respect to image contents, meaning that if the GL accepts and stores
a texture image in compressed form,CompressedTexImage2Dwill accept any
properly encoded compressed texture image of the same width, height, compressed
image size, and compressed internal format for storage at the same texture level.

The specific compressed texture formats supported byCompressedTexIm-
age2D, and the corresponding base internal format for each specific format, are
defined in table 3.10.

Compressed Texture FormatBase Internal Format

PALETTE4 RGB8 OES RGB

PALETTE4 RGBA8 OES RGBA

PALETTE4 R5 G6 B5 OES RGB

PALETTE4 RGBA4 OES RGBA

PALETTE4 RGB5 A1 OES RGBA

PALETTE8 RGB8 OES RGB

PALETTE8 RGBA8 OES RGBA

PALETTE8 R5 G6 B5 OES RGB

PALETTE8 RGBA4 OES RGBA

PALETTE8 RGB5 A1 OES RGBA

Table 3.10: Specific compressed texture formats.

Respecifying Subimages of Compressed Textures

The command

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 80

void CompressedTexSubImage2D(enum target, int level,
int xoffset, int yoffset, sizei width, sizei height,
enum format, sizei imageSize, void *data);

respecifies only a rectangular region of an existing texturearray, with incoming
data stored in a known compressed image format. Thetarget, level, xoffset, yoffset,
width, height, and format parameters have the same meaning as inTexSubIm-
age2D. datapoints to compressed image data stored in the compressed image for-
mat corresponding toformat.

The image pointed to bydata and theimageSizeparameter is interpreted as
though it was provided toCompressedTexImage2D. This command does not pro-
vide for image format conversion, so anINVALID OPERATION error results iffor-
matdoes not match the internal format of the texture image beingmodified. If the
imageSizeparameter is not consistent with the format, dimensions, and contents
of the compressed image (too little or too much data), anINVALID VALUE error
results.

As with CompressedTexImagecalls, compressed internal formats may have
additional restrictions on the use of the compressed image specification calls or
parameters. Any such restrictions will be documented in thespecification defin-
ing the compressed internal format; violating these restrictions will result in an
INVALID OPERATION error.

Any restrictions imposed by specific compressed internal formats will be in-
variant with respect to image contents, meaning that if the GL accepts and stores a
texture image in compressed form,CompressedTexSubImage2Dwill accept any
properly encoded compressed texture image of the same width, height, compressed
image size, and compressed internal format for storage at the same texture level.

Calling CompressedTexSubImage2Dwill result in anINVALID OPERATION

error if xoffsetor yoffsetis not equal to zero, or ifwidth andheightdo not match
the width and height of the texture, respectively. The contents of any texel outside
the region modified by the call are undefined. These restrictions may be relaxed
for specific compressed internal formats whose images are easily modified.

3.7.4 Compressed Paletted Textures

If internalformat is PALETTE4 RGB8, PALETTE4 RGBA8, PALETTE4 R5 G6 B5,
PALETTE4 RGBA4, PALETTE4 RGB5 A1, PALETTE8 RGB8, PALETTE8 RGBA8,
PALETTE8 R5 G6 B5, PALETTE8 RGBA4, or PALETTE8 RGB5 A1, the com-
pressed texture is a compressed paletted texture.data contains the palette data
followed by the mipmap levels, where the number of mipmap levels stored is given

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 86

wherefrac(x) denotes the fractional part ofx.

The texture valueτ is found as

τ = (1 − α)(1 − β)τi0j0 + α(1 − β)τi1j0 + (1 − α)βτi0j1 + αβτi1j1 (3.18)

whereτij is the texel at location(i, j) in the texture image.

Mipmapping

TEXTURE MIN FILTER values NEAREST MIPMAP NEAREST,
NEAREST MIPMAP LINEAR, LINEAR MIPMAP NEAREST, and
LINEAR MIPMAP LINEAR each require the use of amipmap. A mipmap is
an ordered set of arrays representing the same image; each array has a resolution
lower than the previous one. If the image array of level zero has dimensions
2n × 2m, then there aremax{n,m} + 1 image arrays in the mipmap. Each array
subsequent to the array of level zero has dimensions

σ(i − 1) × σ(j − 1)

where the dimensions of the previous array are

σ(i) × σ(j)

and

σ(x) =

{

2x x > 0
1 x ≤ 0

until the last array is reached with dimension1 × 1.
Each array in a mipmap is defined usingTexImage2Dor CopyTexImage2D;

the array being set is indicated with the level-of-detail argument level. Level-
of-detail numbers proceed from zero for the original texture array throughq =
max{n,m} with each unit increase indicating an array of half the dimensions of
the previous one as already described. All arrays from zero throughq must be
defined, as discussed in section 3.7.9.

The mipmap is used in conjunction with the level of detail to approximate the
application of an appropriately filtered texture to a fragment. Let c be the value
of λ at which the transition from minification to magnification occurs (since this
discussion pertains to minification, we are concerned only with values ofλ where
λ > c).

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 93

COMBINE RGB Texture Function

REPLACE Arg0

MODULATE Arg0 ∗ Arg1

ADD Arg0 + Arg1

ADD SIGNED Arg0 + Arg1 − 0.5

INTERPOLATE Arg0 ∗ Arg2 + Arg1 ∗ (1 − Arg2)

SUBTRACT Arg0 − Arg1

DOT3 RGB 4 × ((Arg0r − 0.5) ∗ (Arg1r − 0.5)+
(Arg0g − 0.5) ∗ (Arg1g − 0.5)+
(Arg0b − 0.5) ∗ (Arg1b − 0.5))

DOT3 RGBA 4 × ((Arg0r − 0.5) ∗ (Arg1r − 0.5)+
(Arg0g − 0.5) ∗ (Arg1g − 0.5)+
(Arg0b − 0.5) ∗ (Arg1b − 0.5))

COMBINE ALPHA Texture Function

REPLACE Arg0

MODULATE Arg0 ∗ Arg1

ADD Arg0 + Arg1

ADD SIGNED Arg0 + Arg1 − 0.5

INTERPOLATE Arg0 ∗ Arg2 + Arg1 ∗ (1 − Arg2)

SUBTRACT Arg0 − Arg1

Table 3.17:COMBINE texture functions. The scalar expression computed for the
DOT3 RGB andDOT3 RGBA functions is placed into each of the 3 (RGB) or 4 (RGBA)
components of the output. The result generated fromCOMBINE ALPHA is ignored
for DOT3 RGBA.

by the values ofRGB SCALE andALPHA SCALE, respectively (the scale factors may
only take on values of 1.0, 2.0, or 4.0). The results are clamped to[0, 1].

The argumentsArg0, Arg1, and Arg2 are determined by the values of
SRCn RGB, SRCn ALPHA, OPERANDn RGB and OPERANDn ALPHA, wheren = 0,
1, or 2, as shown in tables 3.18 and 3.19.

The state required for the current texture environment, foreach texture unit,
consists of a six-valued integer indicating the texture function, an eight-valued in-
teger indicating theRGB combiner function and a six-valued integer indicating the
ALPHA combiner function, six four-valued integers indicating the combinerRGB
andALPHA source arguments, three four-valued integers indicating the combiner

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 95

RGB operands, three two-valued integers indicating the combinerALPHA operands,
four floating-point environment color values, and two three-valued floating-point
scale factors. In the initial state, the texture and combiner functions are each
MODULATE, the combinerRGB andALPHA sources are eachTEXTURE, PREVIOUS,
andCONSTANT for sources 0, 1, and 2 respectively, the combinerRGB operands for
sources 0 and 1 are eachSRC COLOR, the combinerRGB operand for source 2, as
well as for the combinerALPHA operands, are eachSRC ALPHA, the environment
color is(0, 0, 0, 0), andRGB SCALE andALPHA SCALE are each 1.0.

3.7.13 Texture Application

Texturing is enabled or disabled using the genericEnableandDisablecommands,
with the symbolic constantTEXTURE 2D to enable or disable texturing, respec-
tively. If texturing is disabled, a rasterized fragment is passed on unaltered to the
next stage of the GL (although its texture coordinates may bediscarded). Other-
wise, a texture value is found according to the parameter values of the currently
bound texture imageusing the rules given in sections 3.7.6 through 3.7.8. This
texture value is used along with the incoming fragment in computing the texture
function indicated by the currently bound texture environment. The result of this
function replaces the incoming fragment’s primary R, G, B, and A values. These
are the color values passed to subsequent operations. Otherdata associated with
the incoming fragment remain unchanged, except that the texture coordinates may
be discarded.

Each texture unit is paired with an environment function, asshown in figure 3.9.
The second texture function is computed using the texture value from the second
texture, the fragment resulting from the first texture function computation and the
second texture unit’s environment function. If there is a third texture, the fragment
resulting from the second texture function is combined withthe third texture value
using the third texture unit’s environment function and so on. The texture unit se-
lected byActiveTexture determines which texture unit’s environment is modified
by TexEnv calls.

If the value ofTEXTURE ENV MODE isCOMBINE, the texture function associated
with a given texture unit is computed using the values specified by SRCn RGB,
SRCn ALPHA, OPERANDn RGB andOPERANDn ALPHA.

Texturing is enabled and disabled individually for each texture unit. If texturing
is disabled for one of the units, then the fragment resultingfrom the previous unit
is passed unaltered to the following unit.

The required state, per texture unit, is one bitindicating whether texturing is
enabled or disabled. In the initial state, texturing is disabled for all texture units.

Version 1.1.10 (DRAFT - March 31, 2007)

3.9. ANTIALIASING APPLICATION 98

in table 2.7 for signed integers. Each component ofCf is clamped to[0, 1] when
specified.

The state required for fog consists of a three-valued integer to select the fog
equation, three floating-point valuesd, e, ands, an RGBA fog color, and a single
bit to indicate whether or not fog is enabled. In the initial state, fog is disabled,
FOG MODE is EXP, d = 1.0, e = 1.0, ands = 0.0; Cf = (0, 0, 0, 0) andif = 0.

3.9 Antialiasing Application

Finally, if antialiasing is enabled for the primitive from which a rasterized fragment
was produced, then the computed coverage value is applied tothe fragment. The
value is multiplied by the fragment’s alpha (A) value to yield a final alpha value.

3.10 Multisample Point Fade

If multisampling is enabled and the rasterized fragment results from a point prim-
itive, then the computed fade factor from equation 3.2 is applied to the fragment.
The fade factor is multiplied by the fragment’s alpha value to yield a final alpha
value.

Version 1.1.10 (DRAFT - March 31, 2007)

4.1. PER-FRAGMENT OPERATIONS 100

Figure 4.1. Per-fragment operations.

and conditions. We describe these modifications and tests, diagrammed in Fig-
ure 4.1, in the order in which they are performed.

4.1.1 Pixel Ownership Test

The first test is to determine if the pixel at location(xw, yw) in the framebuffer
is currently owned by the GL (more precisely, by this GL context). If it is not,
the window system decides the fate of the incoming fragment. Possible results are
that the fragment is discarded or that some subset of the subsequent per-fragment
operations are applied to the fragment. This test allows thewindow system to
control the GL’s behavior, for instance, when a GL window is obscured.

4.1.2 Scissor Test

The scissor test determines if(xw, yw) lies within the scissor rectangle defined by
four values. These values are set with

void Scissor(int left, int bottom, sizei width,
sizei height);

Version 1.1.10 (DRAFT - March 31, 2007)

4.3. READING PIXELS 111

When Clear is called, the only per-fragment operations that are applied (if
enabled) are the pixel ownership test, the scissor test, anddithering. The masking
operations described in the last section (4.2.2) are also effective. If a buffer is not
present, then aClear directed at that buffer has no effect.

The state required for clearing is a clear value for each of the color buffer,
the depth buffer, and the stencil buffer. Initially, the RGBA color clear value is
(0,0,0,0), the stencil buffer clear value is 0, and the depthbuffer clear value is 1.0.

Clearing the Multisample Buffer

The color samples of the multisample buffer are cleared whenthe color buffer is
cleared, as specified by theClear mask bitCOLOR BUFFER BIT.

If the Clear mask bitsDEPTH BUFFER BIT or STENCIL BUFFER BIT are set,
then the corresponding depth or stencil samples, respectively, are cleared.

4.3 Reading Pixels

Pixels may be read from the framebuffer to client memory using theReadPixels
commands, as described below. Pixels may also be copied fromclient memory or
the framebuffer to texture images in the GL using theTexImage2DandCopyTex-
Image2Dcommands, as described in section 3.7.1.

4.3.1 Reading Pixels

The method for reading pixels from the framebuffer and placing them in client
memory is diagrammed in Figure 4.2. We describe the stages ofthe pixel reading
process in the order in which they occur.

Pixels are read using

void ReadPixels(int x, int y, sizei width, sizei height,
enum format, enum type, void *data);

The arguments afterx and y to ReadPixelsare those described in section 3.6.2
defining pixel rectangles. Only two combinations offormat and type are ac-
cepted. The first isformat RGBA and type UNSIGNED BYTE. The second is an
implementation-chosen format from among those defined in table 3.4. The val-
ues offormatandtypefor this format may be determined by callingGetIntegerv
with the symbolic constantsIMPLEMENTATION COLOR READ FORMAT OES and
IMPLEMENTATION COLOR READ TYPE OES, respectively. The implementation-
chosen format may vary depending on the format of the currently bound rendering

Version 1.1.10 (DRAFT - March 31, 2007)

4.3. READING PIXELS 112

Figure 4.2. Operation ofReadPixels. Operations in dashed boxes may be enabled
or disabled.

Parameter Name Type Initial Value Valid Range

PACK ALIGNMENT integer 4 1,2,4,8

Table 4.3:PixelStoreparameters pertaining toReadPixels.

surface. The pixel storage modes that apply toReadPixelsare summarized in
Table 4.3.

Obtaining Pixels from the Framebuffer

The buffer from which values are obtained is the color bufferused for writing (see
section 4.2.1).

ReadPixelsobtains values from the color buffer (with lower left hand corner
at (0, 0)) for each pixel(x + i, y + j) for 0 ≤ i < width and0 ≤ j < height;
this pixel is said to be theith pixel in thejth row. If any of these pixels lies outside
of the window allocated to the current GL context, the valuesobtained for those
pixels are undefined. Results are also undefined for individual pixels that are not
owned by the current context. Otherwise,ReadPixelsobtains values from the color
buffer, regardless of how those values were placed there.

Version 1.1.10 (DRAFT - March 31, 2007)

4.3. READING PIXELS 113

typeParameter GL Data Type Component
Conversion Formula

UNSIGNED BYTE ubyte c = (28 − 1)f

UNSIGNED SHORT 5 6 5 ushort c = (2N − 1)f

UNSIGNED SHORT 4 4 4 4 ushort c = (2N − 1)f

UNSIGNED SHORT 5 5 5 1 ushort c = (2N − 1)f

Table 4.4: Reversed component conversions, used when component data are be-
ing returned to client memory. Color components are converted from the internal
floating-point representation (f) to a datum of the specified GL data type (c) using
the specified equation. All arithmetic is done in the internal floating point format.
These conversions apply to component data returned by GL query commands and
to components of pixel data returned to client memory. The equations remain the
same even if the implemented ranges of the GL data types are greater than the
minimum required ranges. (See Table 2.2.) Equations withN as the exponent are
performed for each bitfield of the packed data type, withN set to the number of
bits in the bitfield.

If format is RGBA, then red, green, blue, and alpha values are obtained from
the selected buffer at each pixel location. If the framebuffer does not support alpha
values then the A that is obtained is 1.0.

Conversion of RGBA values

The R, G, B, and A values form a group of elements. Each elementis taken to
be a fixed-point value in[0, 1] with m bits, wherem is the number of bits in the
corresponding color component of the selected buffer (see section 2.12.8).

Final Conversion

Each component is first clamped to[0, 1]. Then the appropriate conversion formula
from table 4.4 is applied to the component.

Placement in Client Memory

Groups of elements are placed in memory just as they are takenfrom memory for
TexImage2D. That is, theith group of thejth row (corresponding to theith pixel
in thejth row) is placed in memory just where theith group of thejth row would

Version 1.1.10 (DRAFT - March 31, 2007)

6.1. QUERYING GL STATE 118

6.1.2 Data Conversions

If a Get command is issued that returns value types different from the type of the
value being obtained, a type conversion is performed.

If GetBooleanvis called, a floating-point, fixed-point, or integer value converts
to FALSE if and only if it is zero (otherwise it converts toTRUE).

If GetIntegerv (or any of theGet commands below) is called, a boolean
value is interpreted as either1 or 0, and a floating-point or fixed-point value
is rounded to the nearest integer, unless the value is an RGBAcolor compo-
nent, a DepthRange value, a depth buffer clear value, or a normal coordi-
nate. In these cases, theGet command converts the floating-point or fixed-
point value to an integer according theINT entry of Table 4.4; a value not in
[−1, 1] converts to an undefined value. Additionally, if the target of GetInte-
gerv is one of the special valuesMODELVIEW MATRIX FLOAT AS INT BITS OES,
PROJECTION MATRIX FLOAT AS INT BITS OES,
or TEXTURE MATRIX FLOAT AS INT BITS OES, then the corresponding floating-
point matrix elements are returned in an array of integers, according to the IEEE
754 floating point “single format” bit layout1 2.

If GetFixedv is called, a boolean value is interpreted as either1.0 or 0.0, and
an integer or floating-point value is coerced to fixed-point.

If GetFloatv is called, a boolean value is interpreted as either1.0 or 0.0, and
an integer or fixed-point value is coerced to floating-point.

If a value is so large in magnitude that it cannot be represented with the re-
quested type, then the nearest value representable using the requested type is re-
turned.

Unless otherwise indicated, multi-valued state variablesreturn their multiple
values in the same order as they are given as arguments to the commands that set
them. For instance, the twoDepthRangeparameters are returned in the ordern
followed by f.

Most texture state variables are qualified by the value ofACTIVE TEXTURE

to determine which server texture state vector is queried. Client texture
state variables such as texture coordinate array pointers are qualified by the
value of CLIENT ACTIVE TEXTURE. Tables 6.3, 6.4, 6.7, 6.13, 6.15, and 6.21
indicate those state variables which are qualified byACTIVE TEXTURE or

1This functionality exists for applications using the Common-Lite profile which nonetheless need
access to the full accuracy of the internal matrix representation, but is available in the Common profile
as well.

2IEEE 1987. IEEE Standard 754-1985 for Binary Floating-Point Arithmetic, IEEE.
Reprinted in SIGPLAN 22, 2, 9-25. Also see the IEEE 754 Working Group Page at
http://grouper.ieee.org/groups/754/.

Version 1.1.10 (DRAFT - March 31, 2007)

6.2. STATE TABLES 122

Type code Explanation

B Boolean
BMU Basic machine units

C Color (floating-point R, G, B, and A values)
T Texture coordinates (floating-points, t, r, q val-

ues)
N Normal coordinates (floating-pointx, y, z values)
V Vertex, including associated data
Z Integer
Z+ Non-negative integer

Zk, Zk∗ k-valued integer (k∗ indicatesk is minimum)
R Floating-point number
R+ Non-negative floating-point number

R[a,b] Floating-point number in the range[a, b]

Rk k-tuple of floating-point numbers
Rk k-valued floating-pointnumber
P Position (x, y, z, w floating-point coordinates)
D Direction (x, y, z floating-point coordinates)
M4 4 × 4 floating-point matrix
I Image
Y Pointer (data type unspecified)

n × type n copies of typetype (n∗ indicatesn is minimum)

Table 6.1: State variable types

Version 1.1.10 (DRAFT - March 31, 2007)

6.2.
S

TAT
E

TA
B

LE
S

128

Get value Type
Get
Cmnd

Initial
Value Description Sec. Attribute

MODELVIEW MATRIX 16 ∗ ×M4 GetFloatv Identity Model-view matrix stack 2.10.2 –
PROJECTIONMATRIX 2 ∗ ×M4 GetFloatv Identity Projection matrix stack 2.10.2 –
TEXTURE MATRIX 2 ∗ ×2 ∗ ×M4 GetFloatv Identity Texture matrix stack 2.10.2 –
♣ MOD-

ELVIEW MATRIX FLOAT AS INT BITS OES

4 × 4 × Z GetIntegerv Identity Alias of
MODELVIEW MATRIX
in integer encoding

2.10.2 –

♣ PROJEC-

TION MATRIX FLOAT AS INT BITS OES

4 × 4 × Z GetIntegerv Identity Alias of
PROJECTION MATRIX
in integer encoding

2.10.2 –

♣ TEX-

TURE MATRIX FLOAT AS INT BITS OES

4 × 4 × Z GetIntegerv Identity Alias of
TEXTURE MATRIX in
integer encoding

2.10.2 –

VIEWPORT 4 × Z GetIntegerv see 2.10.1 Viewport origin & extent 2.10.1 viewport
DEPTH RANGE 2 × R+ GetFloatv 0,1 Depth range near & far 2.10.1 viewport
MODELVIEW STACK DEPTH Z+ GetIntegerv 1 Model-view matrix stack

pointer
2.10.2 –

PROJECTIONSTACK DEPTH Z+ GetIntegerv 1 Projection matrix stack
pointer

2.10.2 –

TEXTURE STACK DEPTH 2 ∗ ×Z+ GetIntegerv 1 Texture matrix stack
pointer

2.10.2 –

MATRIX MODE Z4 GetIntegerv MODELVIEW Current matrix mode 2.10.2 transform
NORMALIZE B IsEnabled False Current normal

normalization on/off
2.10.3 transform/enable

RESCALE NORMAL B IsEnabled False Current normal rescaling
on/off

2.10.3 transform/enable

CLIP PLANEi 1 ∗ ×R4 GetClipPlane 0,0,0,0 User clipping plane
coefficients

2.11 transform

CLIP PLANEi 1 ∗ ×B IsEnabled False ith user clipping plane
enabled

2.11 transform/enable

Tab
le

6
.7

.
T

ran
sfo

rm
atio

n
state

V
ersion

1.1.10
(D

R
A

F
T

-
M

arch
31,2007)

6.2.
S

TAT
E

TA
B

LE
S

135

Get value Type
Get
Cmnd

Initial
Value Description Sec. Attribute

TEXTURE MIN FILTER n × Z6 GetTexParameter see 3.7 Texture minification
function

3.7.7 texture

TEXTURE MAG FILTER n × Z2 GetTexParameter see 3.7 Texture magnification
function

3.7.8 texture

♣ TEXTURE WRAP S n × Z2 GetTexParameter REPEAT Texcoords wrap mode 3.7.6 texture
♣ TEXTURE WRAP T n × Z2 GetTexParameter REPEAT Texcoordt wrap mode 3.7.6 texture
GENERATE MIPMAP n × B GetTexParameter FALSE Automatic mipmap

generation
3.7.7 texture

Tab
le

6
.1

4
.

Textu
res

(state
p

er
textu

re
o

b
ject)

V
ersion

1.1.10
(D

R
A

F
T

-
M

arch
31,2007)

6.2.
S

TAT
E

TA
B

LE
S

136

Get value Type
Get
Cmnd

Initial
Value Description Sec. Attribute

ACTIVE TEXTURE Z2∗ GetIntegerv TEXTURE0 Active texture unit selector 2.7 texture
TEXTURE ENV MODE 2 ∗ ×Z6 GetTexEnviv MODULATE Texture application function 3.7.12 texture
TEXTURE ENV COLOR 2 ∗ ×C GetTexEnvfv 0,0,0,0 Texture environment color 3.7.12 texture
COORDREPLACE OES 2 ∗ ×B GetTexEnviv False Point coordinate replacement

enabled
3.3 texture

COMBINE RGB 2 ∗ ×Z8 GetTexEnviv MODULATE RGB combiner function 3.7.12 texture
COMBINE ALPHA 2 ∗ ×Z6 GetTexEnviv MODULATE Alpha combiner function 3.7.12 texture
SRC0RGB 2 ∗ ×Z3 GetTexEnviv TEXTURE RGB source 0 3.7.12 texture
SRC1RGB 2 ∗ ×Z3 GetTexEnviv PREVIOUS RGB source 1 3.7.12 texture
SRC2RGB 2 ∗ ×Z3 GetTexEnviv CONSTANT RGB source 2 3.7.12 texture
SRC0ALPHA 2 ∗ ×Z3 GetTexEnviv TEXTURE Alpha source 0 3.7.12 texture
SRC1ALPHA 2 ∗ ×Z3 GetTexEnviv PREVIOUS Alpha source 1 3.7.12 texture
SRC2ALPHA 2 ∗ ×Z3 GetTexEnviv CONSTANT Alpha source 2 3.7.12 texture
OPERAND0RGB 2 ∗ ×Z4 GetTexEnviv SRC COLOR RGB operand 0 3.7.12 texture
OPERAND1RGB 2 ∗ ×Z4 GetTexEnviv SRC COLOR RGB operand 1 3.7.12 texture
OPERAND2RGB 2 ∗ ×Z4 GetTexEnviv SRC ALPHA RGB operand 2 3.7.12 texture
OPERAND0ALPHA 2 ∗ ×Z2 GetTexEnviv SRC ALPHA Alpha operand 0 3.7.12 texture
OPERAND1ALPHA 2 ∗ ×Z2 GetTexEnviv SRC ALPHA Alpha operand 1 3.7.12 texture
OPERAND2ALPHA 2 ∗ ×Z2 GetTexEnviv SRC ALPHA Alpha operand 2 3.7.12 texture
♣ RGB SCALE 2 ∗ ×R3 GetTexEnvfv 1.0 RGB post-combiner scaling 3.7.12 texture
♣ ALPHA SCALE 2 ∗ ×R3 GetTexEnvfv 1.0 Alpha post-combiner scaling 3.7.12 texture

Tab
le

6
.1

5
.

Textu
re

E
nviro

n
m

en
tan

d
G

en
eratio

n

V
ersion

1.1.10
(D

R
A

F
T

-
M

arch
31,2007)

6.2.
S

TAT
E

TA
B

LE
S

137

Get value Type
Get
Cmnd

Initial
Value Description Sec. Attribute

SCISSORTEST B IsEnabled False Scissoring enabled 4.1.2 scissor/enable
SCISSORBOX 4 × Z GetIntegerv see 4.1.2 Scissor box 4.1.2 scissor
ALPHA TEST B IsEnabled False Alpha test enabled 4.1.4 color-buffer/enable
ALPHA TEST FUNC Z8 GetIntegerv ALWAYS Alpha test function 4.1.4 color-buffer
ALPHA TEST REF R+ GetIntegerv 0 Alpha test reference value 4.1.4 color-buffer
STENCIL TEST B IsEnabled False Stenciling enabled 4.1.5 stencil-buffer/enable
STENCIL FUNC Z8 GetIntegerv ALWAYS Stencil function 4.1.5 stencil-buffer
STENCIL VALUE MASK Z+ GetIntegerv 1’s Stencil mask 4.1.5 stencil-buffer
STENCIL REF Z+ GetIntegerv 0 Stencil reference value 4.1.5 stencil-buffer
STENCIL FAIL Z6 GetIntegerv KEEP Stencil fail action 4.1.5 stencil-buffer
STENCIL PASSDEPTH FAIL Z6 GetIntegerv KEEP Stencil depth buffer fail action 4.1.5 stencil-buffer
STENCIL PASSDEPTH PASS Z6 GetIntegerv KEEP Stencil depth buffer pass action 4.1.5 stencil-buffer
DEPTH TEST B IsEnabled False Depth buffer enabled 4.1.6 depth-buffer/enable
DEPTH FUNC Z8 GetIntegerv LESS Depth buffer test function 4.1.6 depth-buffer
BLEND B IsEnabled False Blending enabled 4.1.7 color-buffer/enable
♣ BLEND SRC Z9 GetIntegerv ONE Blending source function 4.1.7 color-buffer
♣ BLEND DST Z8 GetIntegerv ZERO Blending dest. function 4.1.7 color-buffer
DITHER B IsEnabled True Dithering enabled 4.1.8 color-buffer/enable
COLOR LOGIC OP B IsEnabled False Color logic op enabled 4.1.9 color-buffer/enable
LOGIC OP MODE Z16 GetIntegerv COPY Logic op function 4.1.9 color-buffer

Tab
le

6
.1

6
.

P
ixelO

p
eratio

n
s

V
ersion

1.1.10
(D

R
A

F
T

-
M

arch
31,2007)

6.2.
S

TAT
E

TA
B

LE
S

141

Get value Type
Get
Cmnd

Minimum
Value Description Sec. Attribute

MAX LIGHTS Z+ GetIntegerv 8 Maximum number of lights 2.12.1 –
♣ MAX CLIP PLANES Z+ GetIntegerv 1 Maximum number of user clipping

planes
2.11 –

MAX MODELVIEW STACK DEPTH Z+ GetIntegerv 16 Maximum model-view stack depth 2.10.2 –
MAX PROJECTIONSTACK DEPTH Z+ GetIntegerv 2 Maximum projection matrix stack

depth
2.10.2 –

MAX TEXTURE STACK DEPTH Z+ GetIntegerv 2 Maximum number depth of texture
matrix stack

2.10.2 –

SUBPIXEL BITS Z+ GetIntegerv 4 Number of bits of subpixel
precision in screenxw andyw

3 –

MAX TEXTURE SIZE Z+ GetIntegerv 64 Maximum texture image dimension 3.7.1 –
MAX VIEWPORT DIMS 2 × Z+ GetIntegerv see 2.10.1 Maximum viewport dimensions 2.10.1 –

Tab
le

6
.2

0
.

Im
p

lem
en

tatio
n

D
ep

en
d

en
tValu

es

V
ersion

1.1.10
(D

R
A

F
T

-
M

arch
31,2007)

A.3. INVARIANCE RULES 148

• Writemasks (color, depth, stencil)

• Clear values (color, depth, stencil)

• Current values (color, normal, texture coords)

• Material properties (ambient, diffuse, specular, emission, shininess)

Strongly suggested:

• Matrix mode

• Matrix stack depths

• Alpha test parameters (other than enable)

• Stencil parameters (other than enable)

• Depth test parameters (other than enable)

• Blend parameters (other than enable)

• Logical operation parameters (other than enable)

• Pixel storage

• Polygon offset parameters (other than enables, and except as they affect
the depth values of fragments)

Corollary 1 Fragment generation is invariant with respect to the state values
marked with• in Rule 2.

Corollary 2 The window coordinates (x, y, and z) of generated fragments are also
invariant with respect to

Required:

• Current values (color, normal, texture coords)

• Material properties (ambient, diffuse, specular, emission, shininess)

Rule 3 The arithmetic of each per-fragment operation is invariantexcept with re-
spect to parameters that directly control it (the parameters that control the alpha
test, for instance, are the alpha test enable, the alpha testfunction, and the alpha
test reference value).

Corollary 3 Images rendered into different color buffers sharing the same frame-
buffer, either simultaneously or separately using the samecommand sequence, are
pixel identical.

Version 1.1.10 (DRAFT - March 31, 2007)

Appendix B

Corollaries

The following observations are derived from the body and theother appendixes of
the specification. Absence of an observation from this list in no way impugns its
veracity.

1. The error semantics of upward compatible OpenGL ES revisions may
change. Otherwise, only additions can be made to upward compatible re-
visions.

2. GL query commands are not required to satisfy the semantics of theFlush
or theFinish commands. All that is required is that the queried state be con-
sistent with complete execution of all previously executedGL commands.

3. Application specified point size and line width must be returned as specified
when queried. Implementation dependent clamping affects the values only
while they are in use.

4. The mask specified as the third argument toStencilFuncaffects the operands
of the stencil comparison function, but has no direct effecton the update of
the stencil buffer. The mask specified byStencilMask has no effect on the
stencil comparison function; it limits the effect of the update of the stencil
buffer.

5. A material property that is attached to the current color (by enabling
COLOR MATERIAL) always takes the value of the current color. Attempts
to change that material property viaMaterial calls have no effect.

6. There is no atomicity requirement for OpenGL ES renderingcommands,
even at the fragment level.

150

C.3. CORE ADDITIONS AND EXTENSIONS 153

in floating-point, the CL profile may always store it in fixed-point instead. Appli-
cations using the CL profile must call theGetFixedv command, or the equivalent
fixed-point versions of enumerated queries, such asGetLightxv , to query such
state.

C.3 Core Additions and Extensions

.
An OpenGL ES profile consists of two parts: a subset of the fullOpenGL

pipeline, and some extended functionality that is drawn from a set of OpenGL ES
-specific extensions to the full OpenGL specification. Each extension is pruned
to match the profile’s command subset and added to the profile as either a core
addition or a profile extension. Core additions differ from profile extensions in that
the commands and tokens do not include extension suffixes in their names.

Profile extensions are further divided into required (mandatory) and optional
extensions. Required extensions must be implemented as part of a conforming im-
plementation, whereas the implementation of optional extensions is left to the dis-
cretion of the implementor. Both types of extensions use extension suffixes as part
of their names, are present in theEXTENSIONS string, and participate in function
address queries defined in the platform embedding layer. Required extensions have
the additional packaging constraint, that commands definedas part of a required
extension must also be available as part of a static binding if core commands are
also available in a static binding. The commands comprisingan optional extension
may optionally be included as part of a static binding.

From an API perspective, commands and tokens comprising a core addition are
indistinguishable from the original OpenGL subset. However, to increase applica-
tion portability, an implementation may also implement a core addition as an ex-
tension by including suffixed versions of commands and tokens in the appropriate
dynamic and optional static bindings and the extension namein theEXTENSIONS
string.

The Common and Common-Lite profiles add subsets
of the OES byte coordinates, OES fixed point, OES single precision

and OES matrix get OpenGL ES -specific extensions as
core additions, andOES read format, OES compressed paletted texture,
OES point size array andOES point sprite as required profile extensions.
All of these extensions are incorporated into the body of thespecification. The
OES matrix palette andOES draw texture are added as optional profile ex-
tensions, and specified separately in the Khronos ExtensionRegistry, on the web
at URLhttp://www.khronos.org/registry/gles.

Version 1.1.10 (DRAFT - March 31, 2007)

C.3. CORE ADDITIONS AND EXTENSIONS 154

Floating-point commands only Equivalent fixed-point commands
supported in the Common profile support in both Common and Common-List

AlphaFunc AlphaFuncx
ClearColor ClearColorx
ClearDepthf ClearDepthx
ClipPlanef ClipPlanex
Color4f Color4x
DepthRangef DepthRangex
Fogf, Fogfv Fogx, Fogxv
Frustumf Frustumx
GetClipPlanef GetClipPlanex
GetFloatv GetFixedv
GetLightfv GetLightxv
GetMaterialfv GetMaterialxv
GetTexEnvfv GetTexEnvxv
GetTexParameterfv GetTexParameterxv
LightModelf , LightModelfv LightModelx , LightModelxv
Lightf , Lightfv Lightx , Lightxv
LineWidth LineWidthx
LoadMatrixf LoadMatrixx
Materialf , Materialfv Materialx , Materialxv
MultMatrixf MultMatrixx
MultiTexCoord4f MultiTexCoord4x
Normal3f Normal3x
Orthof Orthox
PointParameterf, PointParameterfv PointParameterx, PointParameterxv
PointSize PointSizex
PolygonOffset PolygonOffsetx
Rotatef Rotatex
SampleCoverage SampleCoveragex
Scalef Scalex
TexEnvf, TexEnvfv TexEnvx, TexEnvxv
TexParameterf, TexParameterfv TexParameterx, TexParameterxv
Translatef Translatex
Vertex array commands (ColorPointer, UsetypeFIXED instead
NormalPointer, TexCoordPointer,
andVertexPointer) with typeFLOAT

Table C.1: Common and Common-Lite commands.

Version 1.1.10 (DRAFT - March 31, 2007)

C.3. CORE ADDITIONS AND EXTENSIONS 156

(DepthRange, Frustum, Ortho , etc.). Only the subset matching the profile feature
set is included in the Common profile.

DepthRangef(clampf n, clampf f)
Frustumf (float l, float r, float b, float t, float n, float f)
Orthof (float l, float r, float b, float t, float n, float f)
ClearDepthf(clampf depth)
GetClipPlanef(enum pname, float eqn[4])

C.3.4 Compressed Paletted Texture

The OES compressed paletted texture extension provides a method for
specifying a compressed texture image as a color index imageaccompanied by
a palette. The extension adds ten new texture internal formats to specify different
combinations of index width and palette color format, as described in section 3.7.3.

C.3.5 Read Format

The OES read format extension allows implementation-specific pixel type and
format parameters to be queried by an application and used inReadPixelscom-
mands, as described in section 4.3.1.

C.3.6 Matrix Palette

The optionalOES matrix palette extension adds the ability to support vertex
skinning in OpenGL ES. This extension allow OpenGL ES to support a palette of
matrices. The matrix palette defines a set of matrices that can be used to transform
a vertex. The matrix palette is not part of the model view matrix stack and is
enabled by setting theMATRIX MODE to MATRIX PALETTE OES.

Then vertex units use a palette ofm modelview matrices (wheren andm are
constrained to implementation defined maxima). Each vertexhas a set ofn indices
into the palette, and a corresponding set ofn weights. Matrix indices and weights
can be changed for each vertex.

When this extension is utilized, the enabled units transform each vertex by the
modelview matrices specified by the vertices’ respective indices. These results are
subsequently scaled by the weights of the respective units and then summed to
create the eyespace vertex.

Version 1.1.10 (DRAFT - March 31, 2007)

C.4. PACKAGING 161

version 1.1.10, draft of 2007/02/06 Noted in section 2.10.3 that normal vectors
are treated as row vectors transformed by matrix postmultiplication, which may be
unfamiliar to some graphics programmers. Removed X Window System trademark
information from the copyright pages.

version 1.1.10, draft of 2007/03/31 Document scaling of integer to fixed-point
parameters. Polygon smooth mode is not supported. Front andback material col-
ors exist in terms of the API, but are constrained to always have the same val-
ues. General polygons are not supported. Remove referencesto texture borders.
Many other minor fixes and clarifications from WG review - see Khronos member
Bugzilla bugs 1247, 1257, 1258, 1259.

Version 1.1.10 (DRAFT - March 31, 2007)

