1.3. OPENGL ES PROFILES 2

moves a great deal of redundant and legacy functionalitylevetuding a few new
features. The differences between OpenGL ES and OpenGLoamescribed in
detail in this specification; however, they are summarized companion docu-
ment tittledOpenGL ES Common/Common-Lite Profile Specification (d&tiip

cation). 1

1.3 OpenGL ES Profiles

There are twoprofiles defined for OpenGL ES : Common and Common-Lite.
While many commands are shared by both profiles, some consaaadnly sup-
ported by one profile.

The Common-Lite profile differs from the Common profile priihain being
targeted at a simpler class of graphics system not suppohtigh-performance
floating-point calculations. OpenGL ES commands takingtifigapoint argu-
ments in the Common profile are replaced by equivalent condstaking fixed-
point arguments.

Specific differences between the two profiles, including ansary of
command®only supported in the Common profile, are documented in AgdpeG
and in appropriate sections of the specification.

1.4 Programmer’s View of OpenGL ES

To the programmer, OpenGL ES is a set of commands that allewkcification
of geometric objects in two or three dimensions, togethaghwbmmands that
control how these objects are rendered into the framebufipenGL ES provides
an immediate-mode interface, meaning that specifying gecblcauses it to be
drawn.

A typical program that uses OpenGL ES begins with calls tanape&vindow
into the framebuffer into which the program will draw. Theralls are made to
allocate an OpenGL ES context and associate it with the winddhese steps
are performed using a companion API, the Khronos Nativdd@ratGraphics In-
terface (EGL), which is documented separately. Once a xbigallocated, the
programmer is free to issue OpenGL ES commands. Some callssad to draw
simple geometric objects (i.e. points, line segments, ariggpns), while oth-
ers affect the rendering of these primitives including hdweyt are lit or colored
and how they are mapped from the user’s two- or three-dimbeasimodel space

1| suggest we retain the diff spec, slightly retitled, forstpiurpose if no other.

Version 1.1.10 (DRAFT - January 16, 2007)

2.1. OPENGL ES FUNDAMENTALS 5

viously invoked GL commands. In general, the effects of a Ginmand on either
GL modes or the framebuffer must be complete before any sules¢ command
can have any such effects.

In the GL, data binding occurs on call. This means that dasaquhto a com-
mand are interpreted when that command is received. Evdmeitbmmand re-
quires a pointer to data, those data are interpreted whecathes made, and any
subsequent changes to the data have no effect on the GLguhksame pointer
is used in a subsequent command).

The GL provides direct control over the fundamental opersatiof 3D and 2D
graphics. This includes specification of such parametetsaasformation matri-
ces, lighting equation coefficients, antialiasing meth@usl pixel update opera-
tors. It does not provide a means for describing or modelimgmlex geometric
objects. Another way to describe this situation is to sayitimaGL provides mech-
anisms to describe how complex geometric objects are tormered rather than
mechanisms to describe the complex objects themselves.

The model for interpretation of GL commands is client-seréhat is, a pro-
gram (the client) issues commands, and these commandstaneréted and pro-
cessed by the GL (the server). A server may maintain a numb@t.ccontexts
each of which is an encapsulation of current GL state. A tlesy choose taon-
nectto any one of these contexts. Issuing GL commands when tlgggmois not
connectedo acontextresults in undefined behavior.

The effects of GL commands on the framebuffer are ultimatelytrolled by
the window system that allocates framebuffer resourcess the window system
that determines which portions of the framebuffer the GL rmagess at any given
time and that communicates to the GL how those portions auetated. There-
fore, there are no GL commands to configure the framebuffanitialize the GL.
Similarly, display of framebuffer contents on a monitor €D panel(including
the transformation of individual framebuffer values by lsuechniques as gamma
correction) is not addressed by the GL. Framebuffer cordiom occurs outside
of the GL in conjunction with the window system; the initedtion of a GL con-
text occurs when the window system allocates a window for &idering. The
EGL API defines a portable mechanism for creating GL contemtswindows for
rendering into, which may be used in conjunction with diierr native platform
window systems.

The GL is designed to be run on a range of graphics platforntls vérying
graphics capabilities and performance. To accommodasevtriety, we specify
ideal behavior instead of actual behavior for certain GLrapens. In cases where
deviation from the ideal is allowed, we also specify the sulleat an implemen-
tation must obey if it is to approximate the ideal behavicefully. This allowed
variation in GL behavior implies that two distinct GL implemtations may not

Version 1.1.10 (DRAFT - January 16, 2007)

2.4. BASIC GL OPERATION 10

GL Type Minimum | Description
Bit Width
bool ean 1 Boolean
byte 8 signed binary integer
ubyt e 8 unsigned binary integer
short 16 signed 2’'s complement binary integer
ushort 16 unsigned binary integer
i nt 32 signed 2’s complement binary integer
ui nt 32 unsigned binary integer
fixed 32 signed 2's complement S15.16 scaled
integer
cl anmpx 32 S15.16 scaled integer clamped |to
[0,1]
si zei 32 Non-negative binary integer size
enum 32 Enumerated binary integer value
intptr ptrbits | signed 2's complement binary integer
si zeiptr ptrbits | Non-negative binary integer size
bitfield 32 Bit field
fl oat 32 Floating-point value
cl anpf 32 Floating-point value clamped {0, 1]

Table 2.2: GL data types. GL types are not C types. Thus, famgte, GL
typei nt is referred to asaLi nt outside this document, and is not necessarily
equivalent to the C typént. An implementation may use more bits than the
number indicated in the table to represent a GL type. Coirgetpretation of
integer values outside the minimum range is not requiredielver.

ptrbits is the number of bits required to represent a pointer typajtlirer words,
typesi nt pt r andsi zei pt r must be sufficiently large as to store any address.

Version 1.1.10 (DRAFT - January 16, 2007)

2.5. GL ERRORS 12

2.5 GL Errors

The GL detects only a subset of those conditions that coulcbhsidered errors.
This is because in many cases error checking would adveirs@isct the perfor-
mance of an error-free program.

The command

enum GetError (voi d);

is used to obtain error information. Each detectable esassigned a numeric
code. When an error is detected, a flag is set and the codeaslegt: Further
errors, if they occur, do not affect this recorded code. W&etError is called,
the code is returned and the flag is cleared, so that a furtharwill again record

its code. If a call tdetError returnsNO_ERROR, then there has been no detectable
error since the last call tGetError (or since the GL was initialized).

To allow for distributed implementations, there may be sa\i¢éag-code pairs.

In this case, after a call t&etError returns a value other thadO.ERROR each
subsequent call returns the non-zero code of a distincicibag- pair (in unspecified
order), until all nonNO.ERROR codes have been returned. When there are no more
non-NO_ERROR error codes, all flags are reset. This scheme requires sosii&/po
number of pairs of a flag bit and an integer. The initial stdtallflags is cleared
and the initial value of all codes NO ERRCR.

Table 2.3 summarizes GL errors. Currently, when an errorifiagt, results of
GL operation are undefined only @JT_OF_MEMORY has occurred. In other cases,
the command generating the error is ignored so that it hasfect@n GL state or
framebuffer contents. If the generating command returred@ey it returns zero. If
the generating command modifies values through a pointenaegt, no change is
made to these values. These error semantics apply only ta1Gisenot to system
errors such as memory access errors. This behavior is thientusehavior; the
action of the GL in the presence of errors is subject to change

Three error generation conditions are implicit in the diggimn of every GL
command. First, if a command that requires an enumerate Valpassed a sym-
bolic constant that is not one of those specified as allowfablthat command, the
error | NVALI D.ENUMresults. This is the case even if the argument is a pointer to
a symbolic constant if that value is not allowable for theegicommand. Using

a symbolic constant in one of the Common or Common-Lite @sfivhen that "
constant is only defined to be accepted by the other profilealgb result in the
errorl NVALI D_ENUM

Second, if a negative number is provided where an argumdygpefti zei is
specified, the errorNVALI D_VALUE results.

Version 1.1.10 (DRAFT - January 16, 2007)

2.6. PRIMITIVES AND VERTICES 13

Error Description Offending com-
mand ignored?
| NVALI D.ENUM enumargument out of range Yes
| NVALI D.VALUE Numeric argument out of range| Yes
| NVALI D_.OPERATI ON || Operation illegal in current state Yes
STACK_OVERFLOW Command would cause a stackres
overflow
STACK_UNDERFLOW Command would cause a stagkres
underflow
OUT_OF_MEMORY Not enough memory left to exg- Unknown
cute command

Table 2.3: Summary of GL errors

Finally, if memory is exhausted as a side effect of the exenuif a command,
the errorOUT_OF_MEMORY may be generated. Otherwise errors are generated only
for conditions that are explicitly described in this spesfion.

2.6 Primitives and Vertices

In the GL, geometric objects are drawn by specifying a sesfesoordinate sets
that include vertices and optionally normals, texture dowates, and colors. Co-
ordinate sets are specified using vertex arrays (see sei)n There are seven
geometric objects that are drawn this way: points (inclgdmint sprites), con-
nected line segments (line strips), line segment loopsaraggd line segments
triangle strips, triangle fans, and separated triangles.

Each vertex is specified with two, three, or four coordinatés addition, a
current norma) multiple current texture coordinate setand current color may
be used in processing each vertex. Normals are used by the Gghting cal-
culations; the current normal is a three-dimensional vetitat may be set by
sending three coordinates that specify it. Texture coatdis: determine how a
texture image is mapped onto a primitive. Multiple sets ofuge coordinates
may be used to specify how multiple texture images are mapptaa primitive.
The number of texture units supported is implementatioreddpnt but must be
at least two. The number of texture units supported can beegleiith the state
MAX_TEXTURE_UNI TS.

A color is associated with each vertex. This color is eitregdal on the current
color or produced by lighting, depending on whether or nghting is enabled.

Version 1.1.10 (DRAFT - January 16, 2007)

2.6. PRIMITIVES AND VERTICES 14

Texture coordinates are similarly associated with eachexer Multiple sets of
texture coordinates may be associated with a vertex. F@@reummarizes the as-
sociation of auxiliary data with a transformed vertex toguoe gorocessed vertex

The current values are part of GL state. \ertices, normaisg, taxture co-
ordinates are transformed. Colors may be affected or regldy lighting. The
processing indicated for each current value is applied d&hevertex that is sent to
the GL.

The methods by which vertices, normals, texture coord&aaed colors are
sent to the GL, as well as how normals are transformed and lestices are
mapped to the two-dimensional screen, are discussed later.

Before colors have been assigned to a vertex, the statereegoy a vertex
is the vertex’s coordinates, its normal, the current matgsroperties (see sec-
tion 2.12.2), and its multiple texture coordinate sets. @&mse color assignment is
done vertex-by-vertex, a processed vertex comprises ttiexige coordinates, its
assigned colors, and its multiple texture coordinate sets.

Figure 2.3 shows the sequence of operations that buitfsrative (point, line
segment, or triangle) from a sequence of vertices. Afterimipive is formed, it
is clipped to a viewing volume. This may alter the primitive @ltering vertex
coordinates, texture coordinates, and colors. In the chieeocand triangle prim-
itives, clipping may insert new vertices into the primitivEhe vertices defining a
primitive to be rasterized have texture coordinates andrs@ssociated with them.

2.6.1 Primitive Types

A sequence of vertices is passed to the GL using the comnaraigArrays or
DrawElements (see section 2.8). There is no limit to the number of vertites
may be specified, other than the size of the vertex arrays.

The modeparameter of these commands determines the type of pranity
be drawn using these coordinate sets. The types, and thesporrdingmode
parameters, are:

Points. A series of individual points may be specified witihodePO NTS.
Each vertex defines a separate point or point sprite

Line Strips. A series of one or more connected line segments may be sjgkcifie
with modeLl NE_STRI P. At least two vertices must be provided. In this case, the

first vertex specifies the first segment’s start point whikeshcond vertex specifies
the first segment’s endpoint and the second segment’s stiautt gn general, the
ith vertex (fori > 1) specifies the beginning of thith segment and the end of the
1 — 1st. The last vertex specifies the end of the last segment.lyfane vertex is
specified, then no primitive is generated.

Version 1.1.10 (DRAFT - January 16, 2007)

2.8. VERTEX ARRAYS 21

When an array elementis transferred to the GL by th®rawArrays or
DrawElementscommands, each enabled array is treated differently.

For the vertex array, i§izeis two then ther andy coordinates of the vertex are
specified by the array; theandw coordinates are implicitly set to zero and one,
respectively. Ifsizeis three thent, y, andz are specified and is implicitly set to
one. Ifsizeis four then all coordinates are specified, allowing the dlidim of an
arbitrary point in projective space.

For the color array, ifizeis three then thel component is implicitly set to 1.
If sizeis four then all components are specified. If the color arseagat enabled,
then the current color defined by tkimlor commands is used.

For the normal array, all three coordinates are always &pdciByte, short,
or integer values are converted to floating-point valuesdiated for the corre-
sponding (signed) type in indicated for the correspondsignied) type in table 2.7.
If the normal array is not enabled, then the current norméihdd by theNormal
commands is used.

For the point size array, the single size is always specifiatie point size ar-
ray is not enabled, then the current point size defineBdintSize(see section 3.3)
is used

For the texture coordinate arrayssikeis two then thes andt¢ coordinates are
specified and the andg coordinates are implicitly set to zero and one, respegtivel
If sizeis three thers, t, andr are specified and is implicitly set to one. Ifsizeis
four then all coordinates are specified. If a texture co@tdirarray is not enabled,
then the current texture coordinate defined by NMhdtiTexCoord commands is
used.

The command

voi d DrawArrays (enummode i nt first, si zei count);

constructs a sequence of geometric primitives by sucaadgstvansferring ele-
ments first through first + count — 1 of each enabled array to the Ginode
specifies what kind of primitives are constructed, as definesgction 2.6.1.

The current color, normal, point size, and texture coordisare each indeter-
minate after the execution @frawArrays, if the corresponding array is enabled.
Current values corresponding to disabled arrays are notfireddy the execution
of DrawArrays .

Specifying first < 0 results in undefined behavior. Generating the error
I NVALI D_VALUE is recommended in this case.

The command

voi d DrawElementd enummode si zei count enumtype
voi d *indices);

Version 1.1.10 (DRAFT - January 16, 2007)

2.9. BUFFER OBJECTS 22

constructs a sequence of geometric primitives by sucaagsivansferring the
countelements whose indices are storedindicesto the GL. Theith element
transferred byDrawElementswill be taken from elemenindices[i] of each en-
abled arraytypemust be one oINSI GNED_BYTE or UNSI GNED_SHORT, indicating
that the values iindicesare indices of GL typeibyt e or ushort , respectively.
modespecifies what kind of primitives are constructed; it acedpte same values
as themodeparameter oDrawArrays .

The current color, normal, point size, and texture coordisare each indeter-
minate after the execution BfrawElements if the corresponding array is enabled.
Current values corresponding to disabled arrays are notfireddby the execution
of DrawElements

If the number of supported texture units (the valud®X_TEXTURE_UNI TS) is
k, then the client state required to implement vertex arraysists of an integer for
the client active texture unit selectdrs k£ boolean valuest + k£ memory pointers,

4 + k integer stride valuesi + k& symbolic constants representing array types, and
2 + k integers representing values per element. In the init&iesthe client active
texture unit selector iIIEXTUREO, the boolean values are each false, the memory
pointers are each null, the strides are each zero, and ggeirgt representing values
per element are each four. The array types are €aciAT for the Common profile
andFI XeD for the Common-Lite profile.

2.9 Buffer Objects

The vertex data arrays described in section 2.8 are storetleimt memory. It is
sometimes desirable to store frequently used client datdy as vertex array data,
in high-performance server memory. GL buffer objects pleva mechanism that
clients can use to allocate, initialize, and render fromhsumemory.

The name space for buffer objects is the unsigned integeitb, 2ero re-
served for the GL. A buffer object is created by binding an sedi name to
ARRAY_BUFFER. The binding is effected by calling

voi d BindBuffer (enumtarget ui nt buffer);

with targetset toARRAY_BUFFER andbuffer set to the unused name. The resulting
buffer object is a new state vector, initialized with a zerped memory buffer, and
comprising the state values listed in Table 2.5.

BindBuffer may also be used to bind an existing buffer object. If the liénd
successful no change is made to the state of the newly boufedt bbject, and any
previous binding tdargetis broken.

Version 1.1.10 (DRAFT - January 16, 2007)

2.9. BUFFER OBJECTS 25

with target set toARRAY_BUFFER. offsetandsizeindicate the range of data in the
buffer object that is to be replaced, in terms of basic mazhimts.dataspecifies a
region of client memorgizebasic machine units in length, containing the data that
replace the specified buffer range. ARVALI D.VALUE error is generated ibffset
orsizeis less than zero, or dffset+ sizeis greater than the value BUFFER S| ZE.

2.9.1 \Vertex Arrays in Buffer Objects

Blocks of vertex array data may be stored in buffer objectthlie same for-
mat and layout options supported for client-side vertegysr However, it is ex-
pected that GL implementations will (at minimum) be optiedzor data with all
components represented falsoat (for the Common profile) of i xed (for the
Common-Lite profile), as well as for color data with compadiserepresented as
ubyt e.

A buffer object binding point is added to the client stateoagged with
each vertex array type. The commands that specify the tmtatand or-
ganizations of vertex arrays copy the buffer object namd thabound to
ARRAY_BUFFER to the binding point corresponding to the vertex array of the
type being specified. For example, thrmalPointer command copies the
value of ARRAY_BUFFER.BI NDI NG (the queriable name of the buffer bind-
ing corresponding to the targeARRAY_BUFFER) to the client state variable
NORMAL _ARRAY_BUFFER_BI NDI NG.

Rendering command3rawArrays andDrawElementsoperate as previously =
defined, except that data for enabled vertaxays are sourced from buffers ifthe =
array’s buffer binding is non-zero. When an array is souriteth a buffer object,
the pointer value of that array is used to compute an offediasic machine units,
into the data store of the buffer object. This offset is coteduby subtracting a
null pointer from the pointer value, where both pointers @eated as pointers to
basic machine units.

It is acceptable for vertexarrays to be sourced from any combination of client =
memory and various buffer objects during a single rendeoiperation.

Attempts to source data from a currently mapped buffer ahjéitgenerate an
I NVALI D_.OPERATI ON error.

2.9.2 Array Indices in Buffer Objects

Blocks of array indices may be stored in buffer objects with same format op-
tions that are supported for client-side index arrays. idijt zero is bound to
ELEMENT_ARRAY_BUFFER, indicating thatDrawElementsis to source its indices
from arrays passed as timicesparameters.

Version 1.1.10 (DRAFT - January 16, 2007)

2.10. COORDINATE TRANSFORMATIONS 31

the coordinategl b —n)” and(r t —n)” specify the points on the near clipping
plane that are mapped to the lower left and upper right cereéithe window,
respectively (assuming that the eye is locatedoad 0)”). f gives the distance
from the eye to the far clipping plane. If eitheror f is less than or equal to zero,
[is equal tor, b is equal tat, orn is equal tof, the errorl NVALI D_VALUE results.
The corresponding matrix is

2n r41
P 20 | 0
t
0 t;—r_b Sf
+n n
0 0 - -7
0 0 -1 0

voi d Ortho{xf}(TI, Tr, Th, Tt, Tn, Tf),

describes a matrix that produces parallel projectidnb — n)” and(r t — n)”
specify the points on the near clipping plane that are mappéake lower left and
upper right corners of the window, respectivefygives the distance from the eye
to the far clipping plane. If is equal tor, b is equal tot, or n is equal tof, the
errorl NVALI D.VALUE results. The corresponding matrix is

20 0 -

2 t+b
0 = 0 -
R
0 0 0 1

For each texture unit, & x 4 matrix is applied to the corresponding texture
coordinates. This matrix is applied as

mp; My mog mis S
mg Mg Mmig M4 t
m3 m7 M1l Mis r|’
my Mg Mi2 Mie q

where the left matrix is the current texture matrix. The nxais applied to the
current texture coordinateand the resulting transformed coordinates become the
texture coordinates associated with a vertex. Setting thgixnrmode toTEXTURE
causes the already described matrix operations to apphettekture matrix.

There is also a corresponding texture matrix stack for eagtute unit. To
change the stack affected by matrix operations, seathige texture unit selector
by calling

voi d ActiveTexture(enumtexture);

Version 1.1.10 (DRAFT - January 16, 2007)

2.10. COORDINATE TRANSFORMATIONS 32

The selector also affects calls modifying texture envirentrstate, texture coordi-
nate generation state, texture binding state, and queiri@tbese state values as
well as current texture coordinates.

Specifying an invalidexturegenerates the erreMVALI D_ENUM Valid values
of textureare the same as for tHdultiTexCoord commands described in sec-
tion 2.7.

There is a stack of matrices for each of matrix modéDELVI EW and
PRQIECTI ON, and for each texture unit. FOMODELVI EWmode, the stack depth
is at least 16 (that is, there is a stack of at least 16 modsl-watrices). For the
other modes, the depth is at le@siTexture matrix stacks for all texture units have
the same depth. The current matrix in any mode is the matrithertop of the
stack for that mode.

voi d PushMatrix(voi d);

pushes the stack down by one, duplicating the current miatidoth the top of the
stack and the entry below it.

voi d PopMatrix (voi d);

pops the top entry off of the stack, replacing the currentrixatith the matrix
that was the second entry in the stack. The pushing or poppkes place on the
stack corresponding to the current matrix mode. Popping taxradf a stack with
only one entry generates the er@FrACK_UNDERFLOW pushing a matrix onto a full
stack generateSTACK OVERFLOW

When the current matrix mode IBEXTURE, the texture matrix stack of the
active texture unit is pushed or popped.

The state required to implement transformations consisé anteger for the
active texture unit selector, a four-valued integer intliga the current matrix
mode, one stack of at least twtox 4 matrices for each dPRQJIECTI ON and each
texture unit,TEXTURE; and a stack of at least 6x 4 matrices forMODELVI EW
Each matrix stack has an associated stack pointer. Igjttakre is only one matrix
on each stack, and all matrices are set to the identity. Titialiactive texture unit
selector iSTEXTUREQ, and the initial matrix mode iSODELVI EW

2.10.3 Normal Transformation

Finally, we consider how the model-view matrix and transfation state affect
normals. Before use in lighting, normals are transformedyte coordinates by a
matrix derived from the model-view matrix. Rescaling anadmalization opera-
tions are performed on the transformed normals to make th@tiangth prior to
use in lighting. Rescaling and normalization are contwblg

Version 1.1.10 (DRAFT - January 16, 2007)

2.11. CLIPPING 34

1
\/nx/Q 4 ny/Q _|_nz/2

recomputingf for each normal. This makes all non-zero length normalslangth
regardless of their input length and the nature of the mei- matrix.

After rescaling, the final transformed normal used in ligbtin s, is computed
as

=

nf =m (nwl/ ny// nz//)
If normalization is disabled, them = 1. Otherwise

1
2 2 2
\/nx// + 1, +n."

Because we specify neither the floating-point format nomtigans for matrix
inversion, we cannot specify behavior in the case of a peanlyditioned (nearly
singular) model-view matriX\/. In case of an exactly singular matrix, the trans-
formed normal is undefined. If the GL implementation detewsithat the model-
view matrix is uninvertible, then the entries in the invertaatrix are arbitrary. In
any case, neither normal transformation nor use of the flam&d normal may
lead to GL interruption or termination.

m =

2.11 Clipping

Primitives are clipped to thelip volume In clip coordinates, theiew volumes
defined by

—wWe < xe < We

—We < Ye < We -

—We < ze < We

This view volume may be further restricted by as manynadient-defined clip
planes to generate the clip volume. i§6 an implementation dependent maximum
that must be at leadt) Each client-defined plane specifies a half-space. The clip
volume is the intersection of all such half-spaces with tl@vwolume (if no "
client-defined clip planes are enabled, the clip volumeasview volume).

A client-defined clip plane is specified with

voi d ClipPlane{xf}(enump, const T eqn[4]);

Version 1.1.10 (DRAFT - January 16, 2007)

2.12. COLORS AND COLORING 36

maintained, these clipped edges are connected by new ddgéietalong the clip
volume’s boundary. Thus, clipping may require the intrdéat of new vertices
into a triangle, creating a more genepallygon

If it happens that a triangle intersects an edge of the cllprae’s boundary,
then the clipped triangle must include a point on this bouynéage

A line segment or triangle whose vertices hayevalues of differing signs may
generate multiple connected components after clipping.if@ilementations are
not required to handle this situation. That is, only the iporof the primitive that
lies in the region ofv. > 0 need be produced by clipping.

Primitives rendered with clip planes must satisfy a comg@etarity crite-
rion. Suppose a single clip plane with coefficie0id p, p5 p}) (or a num-
ber of similarly specified clip planes) is enabled and a seokprimitives are
drawn. Next, suppose that the original clip plane is respetiwith coefficients
(-p), —-ph —ps —p)) (and correspondingly for any other clip planes) and
the primitives are drawn again (and the GL is otherwise instime state). In this
case, primitives must not be missing any pixels, nor may &slgbe drawn twice
in regions where those primitives are cut by the clip planes.

The state required for clipping is at least one set of plan@atgns (each set
consisting of four coefficients) and at least one correspanbit indicating which
of these client-defined plane equations are enabled. Imttal istate, all client-
defined plane equation coefficients are zero and all plaredisabled.

2.12 Colors and Coloring

Figure 2.6 diagrams the processing of colors before rastéon. Incoming colors
arrive in one of several formats. Table 2.7 summarizes tim¥arsions that take
place on R, G, B, and A components depending on which verdigheoColor
command was invoked to specify the components. As a reslithitéd precision,
some converted values will not be represented exactly.

Next, lighting, if enabled, produces a color. If lightingdsabled, the current
color is used in further processing. After lighting, coler® clamped to the range
[0,1]. After clamping, a primitive may b#atshaded indicating that all vertices
of the primitive are to have the same colors. Finally, if anptive is clipped, then
colors (and texture coordinates) must be computed at thécegrintroduced or
modified by clipping.

Version 1.1.10 (DRAFT - January 16, 2007)

2.12. COLORS AND COLORING 37

[0,2K-1] — Convert to o
[0.0,1.0] Current [, =0,
Clamp to
RGBA _ O o 20]
[_2k 2|<_1]_> Convert to o Color Lighting [#=O .0, 1.
' [-1.0,1.0] o *
float
grs———— S (I S — i
Clipping
Convert to L Flatshade?
fixed—point A :
v Primitive |
' : Clipping !

Figure 2.6. Processing of colors. See Table 2.7 for thepnégation ofk.

GL Type | Conversion |

ubyte c/(28 —1)
byte (2c+1)/(28 - 1)
ushort c/(2'0 — 1)
short (2c+1)/(2% —1)
fixed c

float c

Table 2.7: Component conversions. Color and normamponentsd) are con-
verted to an internal floating-point representatigh), (Using the equations in this
table. All arithmetic is done in the internal floating-pofiermat These conver-
sions apply to components specified as parameters to GL codsvand to com-
ponents in pixel data. The equations remain the same evée iintiplemented
ranges of the GL data types are greater than the minimumrestjtanges. (Refer
to table 2.2)

Version 1.1.10 (DRAFT - January 16, 2007)

3.3. POINTS 56

tzl_yf"i_%_yw
2 size

wheresize is the point’s sizeg; andy, are the (integral) window coordinates
of the fragment, and:,, andy,, are the exact, unrounded window coordinates of
the vertex for the point.

The widths supported for point sprites must be a superseiasfet supported
for antialiased points. There is no requirement that theiskha must be equally
spaced. If an unsupported width is requested, the neanggbded width is used
instead.

3.3.2 Point Rasterization State

The state required to control point rasterization consistane floating-point value
specifying the point width, three floating-poiveillues specifying the minimum and
maximum point size and the point fade threshold size, thaifig-pointvalues
specifying the distance attenuation coefficients, a bicetthg whether or not an-
tialiasing is enabled, a a bit indicating whether or not psjrites are enabled, and
a bit for the point sprite texture coordinate replacementietor each texture unit.

3.3.3 Point Multisample Rasterization

If MULTI SAMPLE is enabled, and the value 8AMPLE BUFFERS is one, then points
are rasterized using the following algorithm, regardlelsaltether point antialias-
ing (PO NT_SMOOTH) is enabled or disabled. Point rasterization producesg fra
ment for each framebuffer pixel with one or more sample othht intersect a
region centered at the pointis:,,, y,,). This region is a circle having diameter
equal to the current point width HO NT_SPRI TE_CES is disabled, or a square with
side equal to the current point widthO NT_SPRI TE_CES is enabled. Coverage
bits that correspond to sample points that intersect themegye 1, other coverage
bits are 0. All data associated with each sample for the feagrare the data as-
sociated with the point being rasterized, with the exceptibtexture coordinates
whenPO NT_SPRI TE_CES is enabled; these texture coordinates are computed as
described in section 3.3.

Point size range and number of gradations are equivalerito®etsupported
for antialiased points wheRO NT_SPRI TE_CES is disabled. The set of point
sizes supported is equivalent to those for point spritebawuit multisample when
PO NT_SPRI TE_OES is enabled.

Version 1.1.10 (DRAFT - January 16, 2007)

3.4. LINE SEGMENTS 57

3.4 Line Segments

A line segment results from a line strip line loop, or a series of separate line =
segments. Line segment rasterization is controlled byraévariables. Line width,
which may be set by calling

voi d LineWidth (f | oat width);
voi d LineWidthx (f i xed width);

with an appropriate positive width, controls the width oftexized line segments.
The default width is1.0. Values less than or equal 0 generate the error
| NVALI D_VALUE. Antialiasing is controlled withEnable and Disable using the
symbolic constant! NE_.SMOOTH.

3.4.1 Basic Line Segment Rasterization

Line segment rasterization begins by characterizing tgengat as eithex-major

or y-major. z-major line segments have slope in the closed intepvl 1]; all
other line segments aremajor (slope is determined by the segment’s endpoints).
We shall specify rasterization only farmajor segments except in cases where the
modifications fory-major segments are not self-evident.

Ideally, the GL uses a “diamond-exit” rule to determine thd®gments that
are produced by rasterizing a line segment. For each fragyfivith center at win-
dow coordinates:; andy, define a diamond-shaped region that is the intersection
of four half planes:

Ry ={(z,y) | |z —wp[+ |y —ys| < 1/2.}

Essentially, a line segment startingpatand ending ap,, produces those frag-
mentsf for which the segment interseci;, except ifp, is contained inR;. See
figure 3.4.

To avoid difficulties when an endpoint lies on a boundarygfwe (in princi-
ple) perturb the supplied endpoints by a tiny amount. pgaindp, have window
coordinategx,, y,) and(zs, y»), respectively. Obtain the perturbed endpoipfs
given by (zq,ya) — (e, €?) andpj, given by (zp, y,) — (€, €?). Rasterizing the line
segment starting ai, and ending ap;, produces those fragmenfsfor which the
segment starting g, and ending orp;, intersectsR s, except ifp;, is contained in
Ry. eis chosen to be so small that rasterizing the line segmenupes the same
fragments when is substituted foe for any0 < § < e.

When p, and p; lie on fragment centers, this characterization of fragment
reduces to Bresenham’s algorithm with one modificationediproduced in this

Version 1.1.10 (DRAFT - January 16, 2007)

3.5. POLYGONS 62

3.4.4 Line Multisample Rasterization

If MULTI SAMPLE is enabled, and the value BAMPLE BUFFERS is one, then lines
are rasterized using the following algorithm, regardlessttether line antialiasing
(L1 NE_.SMOOTH) is enabled or disabled. Line rasterization produces anieag for
each framebuffer pixel with one or more sample points thargect the rectangular
region that is described in th&ntialiasing portion of section 3.4.2 (Other Line
Segment Features).

Coverage bits that correspond to sample points that irdeeseetained rectan-
gle are 1, other coverage bits are 0. Each color, depth, drmd texture coordinates
is produced by substituting the corresponding sample ilmtanto equation 3.3,
then using the result to evaluate equation 3.5. An impleai&mt may choose to
assign the same color value and the same set of texture natedito more than
one sample by evaluating equation 3.3 at any location witménpixel including
the fragment center or any one of the sample locations, thiestituting into equa-
tion 3.4. The color value and the set of texture coordinatssdimot be evaluated
at the same location.

Line width range and number of gradations are equivalenihdse supported
for antialiased lines.

3.5 Polygons

A polygon results from a triangle strip, triangle fan, orissrof separate trian-
gles. Like points and line segments, polygon rasterizagarontrolled by several
variables.

3.5.1 Basic Polygon Rasterization

The first step of polygon rasterization is to determine if ploé/gon isback facing

or front facing This determination is made by examining the sign of the eosa-
puted by equation 2.6 of section 2.12.1 (including the gbsseversal of this sign
as indicated by the last call terontFace). If this sign is positive, the polygon is
front facing otherwise, it is back facing. This determination is usedanjunction
with the CullFace enable bit and mode value to decide whether or not a particula
polygon is rasterized. TheullFace mode is set by calling

voi d CullFace(enummode);

modeis a symbolic constant: one &RONT, BACK or FRONT_AND_BACK. Culling
is enabled or disabled witfEnable or Disable using the symbolic constant

Version 1.1.10 (DRAFT - January 16, 2007)

3.5. POLYGONS 65

factor scales the maximum depth slope of the polygon, anitis scales an im-
plementation dependent constant that relates to the ussgm&ution of the depth
buffer. The resulting values are summed to produce the polydfset value. Both
factor andunitsmay be either positive or negative.

The maximum depth slope of a triangle is

m= () (52) @7

where(xy,, Y, 2w) IS @ point on the trianglen may be approximated as

0z

Oy

Oz
Y

9

} . (3.8)

m:max{

The minimum resolvable differenceis an implementation constant. It is the
smallest difference in window coordinatevalues that is guaranteed to remain
distinct throughout polygon rasterization and in the ddnifier. All pairs of frag-
ments generated by the rasterization of two polygons witlkemtise identical ver-
tices, butz,, values that differ by, will have distinct depth values.

The offset value for a polygon is

o=mx factor + r *x units. (3.9)

m is computed as described above, as a function of depth vialties range [0,1],
ando is applied to depth values in the same range.

Boolean state valueOLYGON OFFSET _FI LL determines whether is applied
during the rasterization of polygons. This boolean stataevés enabled and dis-
abled using the comman@shable andDisable If POLYGON. OFFSET _FI LL is en-
abled,o is added to the depth value of each fragment produced by $terization
of a polygon.

Fragment depth values are always limited to the range [Bithler by clamping
after offset addition is performed (preferred), or by clangpthe vertex values used
in the rasterization of the polygon.

3.5.4 Polygon Multisample Rasterization

If MULTI SAMPLE is enabled and the value BAMPLE_BUFFERS is one, then poly-
gons are rasterized using the following algorithm. Polygasterization produces
a fragment for each framebuffer pixel with one or more sangolisits that satisfy
the point sampling criteria described in section 3.5.1luding the special treat-
ment for sample points that lie on a polygon boundary edge plilygon is culled,

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 72

3.7 Texturing

Texturing maps a portion of one or more specified images cath erimitive for

which texturing is enabled. This mapping is accomplishedising the color of
an image at the location indicated by a fragme(¢'s) coordinates to modify the
fragment’s RGBA color.

An implementation may support texturing using more thaniorege at a time.
In this case the fragment carries multiple sets of textu@dioates(s, t) which
are used to index separate images to produce color valuehahé collectively
used to modify the fragment's RGBA color. The following sebsons (up to
and including section 3.7.7) specify the GL operation withirsgle texture and
section 3.7.13 specifies the details of how multiple textuniés interact.

The GL provides a means to specify the details of how texguoiira primitive
is effected. These details include specification of the enagoe texture mapped,
the means by which the image is filtered when applied to thaipve, and the
function that determines what RGBA value is produced giveagment color and
an image value.

3.7.1 Texture Image Specification
The command

voi d Texlmage2 enumtarget i nt level
i nt internalformat si zei width, si zei height
i nt border, enumformat enumtype voi d *data);

is used to specify dexture imagetargetmust beTEXTURE_2D. format, type and
data specify the format of the image data, the type of those daihagpointer to
the image data in host memory, as described in section 3.6.2.

The groups in memory are treated as being arranged in a gdetarhe rectan-
gle is animage, whose size and organization are specified bwitith andheight
parameters tdeximage2D

The selected groups are processed as described in se&i@ns3opping after
final expansion to RGBA. Each R, G, B, or A value so generatedaisiped to
[0, 1].

Components are then selected from the resulting R, G, B, @léesg to obtain
a texture with thebase internal formaspecified byinternalformaf which must
matchformat no conversions between formats are supported during resxto-

age processing. Table 3.8 summarizes the mapping of R, G, B, and A values to

When a non-RGBAormatandinternalformatare specified, implementations are not required to

actually create and then discard unnecessary R, G, B, or Aocoents. The abstract model defined

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 73

| Base Internal Format RGBA | Internal Components .
ALPHA A A
LUM NANCE R L
LUM NANCEALPHA | R,A L,A
RGB R,G,B R,G,B
RGBA R,G,B,A| R,G,B,A

Table 3.8: Conversion from RGBA pixel components to intetesture compo-
nents. See section 3.7.12 for a description of the textungpomentsrk, G, B, A,
andL.

texture components, as a function of the base internal fooftiae texture image.
internalformatmay be one of the five internal format symbolic constantedish
table 3.8. Specifying a value famternalformatthat is not one of the above values
generates the errdmNVALI D VALUE. If internalformatdoes not matcformat, the
errorl NVALI D.OPERATI ONis generated.

The GL stores the resulting texture with internal comporresolutions of its
own choosing. The allocation of internal component resmtutnay vary based
on anyTexlmage2D parameter (exceparged, but the allocation must not be a
function of any other state and cannot be changed once issiadbl Allocation
must be invariant; the same allocation must be chosen eaehatitexture image is
specified with the same parameter values.

The image itself (pointed to bgata) is a sequence of groups of values. The
first group is the lower left corner of the texture image. Sadueent groups fill
out rows of widthwidth from left to right; heightrows are stacked from bottom
to top forming theimage. When the final R, G, B, and A components have been =
computed for a group, they are assigned to componentsexedas described by
table 3.8. Counting from zero, each resultiNgh texel is assigned internal integer
coordinateg(, j), where

i = (N mod width)

j= (LwidthJ mod height)

Thus the last row of themage is indexed with the highest valuejof "
Each color component is converted (by rounding to nearess) fixed-point

value withn bits, wheren is the number of bits of storage allocated to that com-

ponent in the image array. We assume that the fixed-poineseptation used

by section 3.6.2 is used only for consistency and ease ofigéea.

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 74

represents each valug/(2" — 1), wherek € {0,1,...,2" — 1}, ask (e.g. 1.0is
represented in binary as a string of all ones).

Thelevelargument tafexlimage2Dis an integetevel-of-detailnumber. Levels
of detail are discussed below, unddipmapping. The main texture image has a
level of detail number of 0. If a level-of-detail less thamaes specified, the error
| NVALI D_VALUE is generated.

If the border argument to Texlmage2D is not zero, then the error
I NVALI D_VALUE is generated.

For non-zerowidth andheight it must be the case that

ws = 2" (3.12)

hy = 2™ (3.13)

for some integers: and m, wherew, and h, are the specified imageidth
and height If any one of these relationships cannot be satisfied, theretror
I NVALI D_VALUE is generated.

An image with zero width or height indicates the null textufeéhe null texture
is specified for level-of-detail zero, it is as if texturingere disabled.

The maximum allowable width and height of a texture image tnies at
least 2% for image arrays of leveD through k, wherek is the log base 2 of
MAX_TEXTURE_SI ZE.

An implementation may allow an image array of level 0 to beatad only if
that single image array can be supported. Additional caimgs on the creation of
image arrays of level 1 or greater are described in moreldetaection 3.7.9.

The image indicated to the GL by the image pointer is decodédapied into
the GL’s internal memory.

We shall refer to the decoded image as tivdure array A texture array has
width and height

wt:2”
hy =2

wheren andm are defined in equations 3.12 and 3.13.

An element(i, j) of the texture array is calledtaxel Thetexture valueused in
texturing a fragment is determined by that fragment’s ass$ed (s, t) coordinates,
but may not correspond to any actual texel. See figure 3.8.

If the data argument ofTeximage2Dis a null pointer (a zero-valued pointer
in the C implementation), a texture array is created withsppecifiedtarget level
internalformat width, and height but with unspecified image contents. In this

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 75

1.0 4.0
3
o
g I
t v j
1 y B
0
0.0 0.0
0 1 2 3 ; 4 5 6 7
0.0 <= u » 8.0
0.0 = S » 1.0

Figure 3.8. A texture image and the coordinates used to adcekhis is atexture
with n = 3 andm = 2. o« and3, values used in blending adjacent texels to obtai
texture value, are also shown.

na

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 76

case no pixel values are accessed in client memory, and mb pigcessing is
performed. Errors are generated, however, exactly as ththegatapointer were
valid.

3.7.2 Alternate Texture Image Specification Commands

Texture images may also be specified using image data takectlgifrom the
framebuffer, and rectangular subregions of existing texionages may be respec-
ified.

The command

voi d CopyTeximage2d enumtarget i nt level
enuminternalformat i nt x, i nt y, si zei width,
si zei height i nt border);

defines atexture array in exactly the mannefefimage2D except that the image
data are taken from the framebuffer rather than from clieetrmory. target must
be TEXTURE_2D, X, Yy, width, andheightcorrespond precisely to the corresponding
arguments tdreadPixels(refer to section 4.3.1); they specify the image/<h
and height and the lower leftz, y) coordinates of the framebuffer region to be
copied. The image is taken from the color buffer of the fraoffely exactly as
if these arguments were passedReadPixelswith argumentormat set toRGBA,
stopping after conversion of RGBA values. Subsequent griag is identical to
that described folfeximage2D beginning with clamping of the R, G, B, and A
values from the resulting pixel groups. Parameteve| internalformat andbor-
der are specified using the same values, with the same meanstige aquivalent
arguments offexlmage2D internalformatis further constrained such that color
buffer components can be dropped during the conversianténalformat but
new components cannot be added. For example, an RGB cofer bah be used
to createLUM NANCE or RGB textures, but noALPHA, LUM NANCE_ALPHA, or n
RGBA textures. Table 3.9 summarizes the allowable framebufidriease internal
format combinations. If the framebuffer format is not corilpla with the base tex-
ture format, an NVALI D_OPERATI ONerror is generated. The constraintsweialth,
height andborderare exactly those for the equivalent argument$eximage2D
Two additional commands,

voi d TexSublmage2lj enumtarget, i nt level i nt xoffset

i nt yoffsef si zei width, si zei height enumformat,
enumtype voi d *data);

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 77

\ \ Texture Format
Color Buffer | A | L | LA | RGB | RGBA
A =] = | - -

L — v =1 = -
LA VIV - -
RGB - | v | - v -
RGBA VIV v v

Table 3.9:CopyTexture internal format/color buffer combinations

voi d CopyTexSublmage2 enumtarget i nt level
i nt xoffsef i nt yoffset i nt x, i nt y, si zei width,
si zei height);

respecify only a rectangular subregion of an existing textrray. No change

is made to thenternalformat width, or height parameters of the specified tex-
ture array, nor is any change made to texel values outsidesgheified subre-
gion. Thetargetarguments offexSublmage2DandCopyTexSublmage2Dmust

be TEXTURE_2D. Thelevel parameter of each command specifies the level of the
texture array that is modified. lévelis less than zero or greater than the base 2
logarithm of the maximum texture width or height, the errdivVALI D_VALUE is
generated.

TexSublmage2Dargumentswidth, height format, type anddata match the
corresponding arguments f@xImage2D, meaning that they are specified using
the same values, and have the same meanings.

CopyTexSublmage2Dargumentsx, y, width, and height match the corre-
sponding arguments ©opyTexlmage2D Each of theTexSublmagecommands
interprets and processes pixel groups in exactly the maofriesr TexImage coun-
terpart, except that the assignment of R, G, B, angiXel group values to the
texture components is controlled by thrgernalformat of the texture array, not
by an argument to the command. The same constraints and eqpply to the
TexSublmagecommands’ argumerfbrmatand theinternalformatof the texture
array being respecified as apply to fieematandinternalformatarguments of its
Texlmage counterparts.

Argumentsxoffsetandyoffsetof TexSublmage2DandCopyTexSublmage2D
specify the lower left texel coordinates ofnadth-wide byheighthigh rectangular
subregion of the texture array, address as in figure 3.8. nflaki and i, to be
the specified width and height of the texture array, and takiny, w, andh to
be thexoffset yoffset width, and heightargument values, any of the following

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 78

relationships generates the ertowALI D_VALUE:

z <0
T+ w > wg
y <0
y—+h > hg

Counting from zero, theth pixel group is assigned to the texel with internal integer
coordinatedi, j|, where

i =x + (n mod w)

j=y+ () mod)

3.7.3 Compressed Texture Images

Texture images may also be specified or modified using imaigeali@ady stored
in a known compressed image format. The GL defines some sped-
pressed formats, and others may be defined by GL extensidmexeTs a mech-
anism to obtain token values for compressed formats; thebeurof specific
compressed internal formats supported can be obtained égyigg the value
of NUM.COVPRESSED_TEXTURE_FORMATS. The set of specific compressed inter-
nal formats supported by the renderer can be obtained byyiqgethe value
of COVPRESSED_TEXTURE_FORVATS. The only values returned by this query are
those corresponding timternalformatparameters accepted IompressedTex-
Image2Dand suitable for general-purpose usage. The renderer gti#mumerate
formats with restrictions that need to be specifically ustiayd prior to use.

The command

voi d CompressedTeximage2Denumtarget i nt level
enuminternalformat si zei width, si zei height
i nt border, si zei imageSize voi d *data);

defines atexture image, with incoming data stored in a specific cosged image "
format. Thetarget, level internalformat width, height andborder parameters
have the same meaning asTieximage2D datapoints to compressed image data
stored in the compressed image format correspondimgtéonalformat

For all compressed internal formats, the compressed imétjeandecoded ac-
cording to the definition ointernalformat Compressed texture images are treated
as an array oimageSizelbyt es beginning at addreskata All pixel storage and

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 80

voi d CompressedTexSublmage2DPenumtarget i nt level
i nt xoffsef i nt yoffsef si zei width, si zei height
enumformat si zei imageSize voi d *data);

respecify only a rectangular region of an existing texturaya with incoming data
stored in a known compressed image format. Tdmget, level xoffset yoffsef
width, height andformat parameters have the same meaning a$exSublm-
age2D datapoints to compressed image data stored in the compressee ifoa
mat corresponding ttormat

The image pointed to bgata and theimageSizgparameter is interpreted as
though it was provided t€ompressedTexlmage2DThis command does not pro-
vide for image format conversion, so aNVALI D_.OPERATI ON error results iffor-
matdoes not match the internal format of the texture image beindified. If the
imageSizeparameter is not consistent with the format, dimensiond, @antents
of the compressed image (too little or too much data)| BWALI D_VALUE error
results.

As with CompressedTexImagecalls, compressed internal formats may have
additional restrictions on the use of the compressed impgeification calls or
parameters. Any such restrictions will be documented insihecification defin-
ing the compressed internal format; violating these refsnms will result in an
I NVALI D_.OPERATI ON error.

Any restrictions imposed by specific compressed internahéds will be in-
variant with respect to image contents, meaning that if theGepts and stores a
texture image in compressed for@pmpressedTexSublmage2vill accept any
properly encoded compressed texture image of the same,igigiht, compressed
image size, and compressed internal format for storageeatdme texture level.

Calling CompressedTexSublmage2vill result in anl NVALI D.OPERATI ON
error if xoffsetor yoffsetis not equal to zero (border width), orwidth andheight
do not match the values GEEXTURE_W DTH and TEXTURE_HEI GHT respectively.
The contents of any texel outside the region modified by thleata undefined.
These restrictions may be relaxed for specific compresdedchal formats whose
images are easily modified.

3.7.4 Compressed Paletted Textures

If internalformatis PALETTE4 _RGB8, PALETTE4_RGBA8, PALETTE4_R5_G6_B5,
PALETTE4_RGBA4, PALETTE4_RGB5_Al, PALETTE8_RGB8, PALETTES_RGBAS,
PALETTE8_R5_.G5_B5, PALETTE8_RGBA4, or PALETTE8_RGB5_Al, the com-
pressed texture is a compressed paletted textde¢a contains the palette data
followed by the mipmap levelsvhere the number of mipmap levels stored is given

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 81

by |level| + 1. The number of bits that represent a texel is 4 biigtiérnalformat
is PALETTE4 * and is 8 bits ifinternalformatis PALETTES .

The palette data is formatted as an image containing 16°P@0ETTE4 +) or
256 (for PALETTES) palette entries (pixels). The equivaldotmat andtype of
each palette entry is shown in table 3.11.

Compressed Texture FormatPalette entry| Palette entry

format type
PALETTE4_RGBS_CES RGB UNSI GNED_.BYTE
PALETTE4_RGBA8S_CES RGBA UNSI GNED_.BYTE
PALETTE4_R5_G6_B5_CES RGB UNSI GNED_SHORT_5_6_5
PALETTE4_RGBA4_CES RGBA UNSI GNED_SHORT 4444
PALETTE4_RGB5_A1_CES RGBA UNSI GNED_SHORT 5.5.5_1
PALETTE8_RGB8_CES RGB UNSI GNED_BYTE
PALETTES8_RGBAS_CES RGBA UNSI GNED_.BYTE
PALETTE8_R5_G6_B5_CES RGB UNSI GNED_SHORT 5.6_5
PALETTES8_RGBA4_CES RGBA UNSI GNED_SHORT 4.4 4 4
PALETTE8_RGB5_A1_CES RGBA UNSI GNED_SHORT 5.5 5_1

Table 3.11: Palette entry pixel formats.

Image data immediately follows the palette image. Each rapmevel im-
age present in the image data immediately follows the pusvievel, starting
with mipmap level zero and proceeding through the numbeewéls defined by
|level| + 1. Texels within each mipmap level image are formatted as shiow
table 3.12 and are packed contiguously starting at the Itefter

PALETTEA = :

7 6 5 4 3 2 1 0

1st texel 2nd texel

PALETTES *:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 131211109 8 7 6 5 4 3 2 1 0

‘ 1st texel ‘ 2nd ‘ 3rd ‘ 4th

Table 3.12: Texel data formats for compressed palettedrext

If a compressed paletted texture is specified with a podigvel argument to

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 82

| Name | Type | Legal Values |
TEXTURE_WRAP_S integer | CLAMP_TO.EDGE, REPEAT
TEXTUREMRAP_T integer | CLAMP_TO.EDGE, REPEAT
TEXTUREM NLFI LTER | integer | NEAREST,
LI NEAR,

NEAREST_M PVAP_NEAREST,
NEAREST_M PVAP_LI NEAR,
LI NEARM PMAP_NEAREST,
LI NEARM PMAP_LI NEAR,
TEXTURE MAGFI LTER | integer | NEAREST,

LI NEAR

GENERATE_M PNVAP boolean| TRUE or FALSE

Table 3.13: Texture parameters and their values.

TexIimage2D anl NVALI D_VALUE error is generated.

Subimages may not be specified for compressed palettedréextiCalling
CompressedTexSublmage2vith any of thePALETTE+ arguments in table 3.11
will generate an NVALI D.OPERATI ON error.

3.7.5 Texture Parameters

Various parameters control how the texture array is treatben specified or
changed, and when applied to a fragment. Each parametérly salling

voi d TexParameter{ixf }(enumtarget enumpname
T param);

voi d TexParameter{ixf }v(enumtarget enumpname
T params);

targetis the target, which must BEEXTURE_2D. pnamds a symbolic constant indi-
cating the parameter to be set; the possible constants ams$ponding parameters
are summarized in table 3.13. In the first form of the commagadamis a value
to which to set a single-valued parameter; in the second fafrthe command,
paramsis an array of parameters whose type depends on the paraeatgrset.

If the value of texture paramet@ENERATE_M PMAP is TRUE, specifying or
changing texture arrays may have side effects, which amustied in théluto-
matic Mipmap Generation discussion of section 3.7.7.

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 84

Scale Factor and Level of Detail

The choice is governed by a scale factdx, y) and thelevel of detailparameter
Az, y), defined as

Az, y) = logs[p(z,)]

If X\(z,y) is less than or equal to the constan{described below in sec-
tion 3.7.8) the texture is said to be magnified,; if it is greatee texture is minified.

Let s(z,y) be the function that associates saitexture coordinate with each set
of window coordinates$z, y) that lie within a primitive; define(z, y) analogously.
Letu(z,y) = 2"s(x,y) andv(z,y) = 2™t(z,y), wheren andm are as defined by
equations 3.12 and 3.13 with, andh, equal to the width and height of the image
array whose level is zero. For a polygaonmjs given at a fragment with window
coordinategx, y) by

A ov\ 2 ou\? o\ ?
"‘m‘”‘w () + (5 V &) (&) } G194
wheredu/dx indicates the derivative af with respect to window, and similarly

for the other derivatives.
For a line, the formula is

2 2
p= \/(%Ax + %Ay) + (%Aac + %Ay) /l, (3.15)
whereAx = x5 — x; and Ay = yo — y1 with (x1,y1) and (z2, y2) being the
segment’s window coordinate endpoints dne /Axz? + Ay2. For a point or
point sprite p = 1.

While it is generally agreed that equations 3.14 and 3.18 tiie best results
when texturing, they are often impractical to implement. efifiore, an imple-
mentation may approximate the idealwith a function f(z,y) subject to these
conditions:

1. f(z,y) is continuous and monotonically increasing in each|@f/oz|,
|0u/0yl, |Ov/dx], |Ov/dyl,

2. Let
{22221
M, = max 92| |9y
{222
Mo = Hhax ox|’ |y

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 85

Thenmax{m,, m,} < f(z,y) < my + my,.

When X indicates minification, the value assignedTE&XTURE.M N.FI LTER
is used to determine how the texture value for a fragment lsctd. When
TEXTURE_M NFI LTER is NEAREST, the texel in the image array of level zero that
is nearest (in Manhattan distance) to that specifietsbs) is obtained. This means
the texel at locatiorfi, j) becomes the texture value, witlgiven by

. U, s<1
z:{ %nJ_l e (3.16)

(Recall that ifTEXTURE_WRAP_S is REPEAT, then0 < s < 1.) Similarly, j is found
as

. v, t<1
]—{2m_1’ P (3.17)

WhenTEXTURE.M NLFI LTERIs LI NEAR, a2 x 2 squareof texels in the image
array of level zero is selected. This squasebtained by first wrapping texture
coordinates as described in section 3.7.6, then computing

. { lu—1/2] mod 2", TEXTURE.WRAP_S is REPEAT
0 pr—

lu—1/2], otherwise
and
- |v—1/2) mod 2™, TEXTURERAP_T is REPEAT
J0= lv—1/2], otherwise
Then
i (ip + 1) mod 2", TEXTUREWRAP_S is REPEAT
7 g+ 1, otherwise
and
| (jo+1)mod 2™, TEXTUREVRAP_T is REPEAT
M= jo+1, otherwise
Let

a = frac(u — 1/2)
B = frac(v — 1/2)

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 86

wherefrac(x) denotes the fractional part of

The texture value is found as

T = (1 - a)(l - B)Tiojo + a(l - ﬂ)Tile + (1 - O‘)BTiojl + aﬂTim& (3-18)

wherer;; is the texel at locatioi, j) in the texture image.

Due to the removal of texture borders and restrictions orpwnades in the
GL, the selected;; in the above equation will never refer to a border texel with
i<0,j<0,i>ws 0rj > hg.?

Mipmapping
TEXTUREM NFI LTER values NEAREST_M PMAP_NEAREST,
NEAREST_M PMAP_LI NEAR, LI NEAR.M PNVAP_NEAREST, and

LI NEARM PMAP_LI NEAR each require the use of mipmap A mipmap is
an ordered set of arrays representing the same image; eaghhas a resolution
lower than the previous one. If the image array of level zeas Himensions
2" x 2™, then there arenax{n, m} + 1 image arrays in the mipmap. Each array
subsequent to the array of level zero has dimensions

oi—1)xo(j—1)

where the dimensions of the previous array are

o(i) x ()
and

27 x>0
o(z) = 1 <0

until the last array is reached with dimensibrx 1 x 1.

Each array in a mipmap is defined usifgximage2D or CopyTeximage2D
the array being set is indicated with the level-of-detagementlevel Level-
of-detail numbers proceed from zero for the original tegtarray throughy =
max{n, m} with each unit increase indicating an array of half the disiens of
the previous one as already described. All arrays from Zerough ¢ must be
defined, as discussed in section 3.7.9.

2|s this really true with regard tREPEAT wrap mode?

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 87

The mipmap is used in conjunction with the level of detail pp@ximate the
application of an appropriately filtered texture to a fragmelLet ¢ be the value
of A\ at which the transition from minification to magnificationcoics (since this
discussion pertains to minification, we are concerned orilly vialues ofA where
A > o).

For mipmap filters NEAREST_-M PVAP_NEAREST and
LI NEAR.M PMAP_NEAREST, thedth mipmap array is selected, where

0, A< 3
d=< [A+31-1, A>3 A<q+13 (3.19)
q,)\>q+%

The rules forNEAREST or LI NEAR filtering are then applied to the selected
array.

For mipmap filterSNEAREST_M PMAP_LI NEAR andLl NEAR.M PMAP_LI NEAR,
the leveld; andds mipmap arrays are selected, where

_ q, A>q
o _{ |\], otherwise (3.20)

_)@ A>q
dz = { dy + 1, otherwise (3.21)
The rules forNEAREST or LI NEAR filtering are then applied to each of the
selected arrays, yielding two corresponding texture \&lgyeand 5. The final
texture value is then found as

T = [1 — frac(\)]m + frac(\)7e.

Automatic Mipmap Generation

If the value of texture paramet@ENERATE_M PMAP is TRUE, making any change
to the texels of the zero level array of a mipmap will also cotepa complete set
of mipmap arrays (as defined in section 3.7.9) derived fraemtiodified zero level
array. Array levelsl throughq arereplaced with the derived arrays, regardless of |
their previous contents. The zero level array is left ungieahby this computation.

The internal formats of the derived mipmap arrays all makasé of the zero
level array, and the dimensions of the derived arrays folllbe/requirements de-
scribed in section 3.7.9.

The contents of the derived arrays are computed by repddteted reduction
of the zero level array. No particular filter algorithm is téiged, though & x 2 box |

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 89

Effects of Completeness on Texture Image Specification

An implementation may allow a texture image array of levelrlgceater to be
created only if a complete set of image arrays consisterit thi¢ requested array
can be supported.

3.7.10 Texture State

The state necessary for texture can be divided into two oatsy First, there is
the set of mipmap arrays and their number. Each array hagiagsh with it a
width and height, an integer describing the internal forofahe image, six integer
values describing the resolutions of each of the red, gtaee, alpha, luminance,
and intensity components of the image, a boolean describiregher the image is
compressed or not, and an integer size of a compressed ifBagR.initial texture
array is null (zero width and height, internal formigtwith the compressed flag
set toFALSE, a zero compressed size, and zero-sized components). tNex,
are the two sets of texture properties; each consists ofdleeted minification
and magnification filters, the wrap modes foand¢, and a boolean indicating
whether automatic mipmap generation should be performedhe initial state,
the value assigned tOEXTURE_M NLFI LTER is NEAREST_M PMAP_LI NEAR, and
the value fOrTEXTURE_.MAG FI LTERs LI NEAR. s andt wrap modes are both set
to REPEAT. The value ofGENERATE M PMAP is false.

3.7.11 Texture Objects

In addition to the default texturéEXTURE_2D, named texture objects can be cre-
ated and operated upon. The name space for texture objebis isisigned inte-
gers, with zero reserved by the GL.

A texture object is created hyinding an unused name tOEXTURE_2D. The
binding is effected by calling

voi d BindTexture(enumtarget ui nt texture);

with target set to TEXTURE_2D andtextureset to the unused name. The result-
ing texture object is a new state vector, comprising all tagesvalues listed in
section 3.7.10, set to the same initial values.

BindTexture may also be used to bind an existing texture object to
TEXTURE_2D. If the bind is successful no change is made to the state didhed
texture object, and any previous bindingtéogetis broken.

While a texture object is bound, GL operations on the targewtiich it is
bound affect the bound object, and queries of the target tohwihis bound return

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 90

state from the bound object. If texture mapping is enaktled state of the bound |
texture object directs the texturing operation.
| |

TEXTURE 2D has atexture state vector associated with it. In order that a&ces =
to this initial texture not be lost, it is treated as a textabgect whose names is O.
The initial texture is therefore operated upon, queried, and applig&&BURE_2D .
while 0 is bound to the corresponding targets.

Texture objects are deleted by calling

voi d DeleteTextureg si zei n, ui nt *textures);

texturescontainsn names of texture objects to be deleted. After a texture bbjec
is deleted, it has no contents, and its name is again unugedtekture that is
currently bound to the targ@tEXTURE_2D is deleted, it is as thougBindTexture
had been executed with the satasgetandtexturezero. Unused names iaxtures
are silently ignored, as is the value zero.

The command

voi d GenTextureq si zei n, ui nt *textures);

returnsn previously unused texture object namesteértures These names are
marked as used, for the purposes@dnTexturesonly, but they acquire texture
state only when they are first bound, just as if they were unused. "
The texture object name space, including the initiekture object, is shared =
among all texture units. A texture object may be bound to ntloa@ one texture
unit simultaneously. After a texture object is bound, anyd@plerations on that tar-
get object affect any other texture units to which the samiite object is bound.
Texture binding is affected by the setting of the s#&@#1 VE_TEXTURE.
If a texture object is deleted, it is as if all texture unitsighare bound to that
texture object are rebound to texture object zero.

3.7.12 Texture Environments and Texture Functions
The command

voi d TexEnv{ixf}(enumtarget enumpname T param);
voi d TexEnv{ixf}v(enumtarget enumpname T params);

sets parameters of thexture environmenthat specifies how texture values are
interpreted when texturing a fragment.

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING

Texture Base Texture source color
Internal Format C Ag
ALPHA (0,0,0) Ay
LUM NANCE (Ly, Ly, Ly) 1
LUM NANCEALPHA | (L, Ly, Ly) | Ay
RCB (Rt, Gt, Bt) 1
RGBA (R, Gy, By) | Ay

92

Table 3.14: Correspondence of filtered texture componentsxture source com-

ponents.

Texture Base REPLACE | MODULATE | DECAL

Internal Format Function | Function Function

ALPHA Co=Cp | Cy=0Cy undefined
A, =As | Ay = ApA,

LUM NANCE C,=0Cs | Cy =C,Cs | undefined

(or1) Ay =4, | Ay =4,

LUM NANCEALPHA | C, = Cs | C, = C,C; | undefined

(or2) Ay, =As | Ay = A4,A;

RGB Co,=0Cs | C,=0C,Cs | Cy =0Cs

(or 3) A, =4, | Ay =4, A, =4,

RGBA Co=0Cs | C,=C,Cs | Cy, =Cp(1 —Ag) + CsAs

(or 4) Ay =As | Ay =4,A, | A, =4,

Table 3.15: Texture functionREPLACE, MODULATE, andDECAL.

0

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 93

Texture Base BLEND ADD
Internal Format Function Function
ALPHA Cy, =0, Cy=GCp

A, = ApA; A, = ApA;
LUM NANCE Cy=Ch(1—Cs)+ C.Cs | Cy =Cp+ Cs
(or1) Ay, = A4, A, = A,
LUM NANCEALPHA | C, = C,(1 = Cs) + C.Cs | Cy = Cp+ Cs
(or2) A, = ApA; A, =ApA;
RGB C,=C,(1-C5)+CCs | C,=Cp+Cs
(or3) A, = A A, = A,
RGBA C,=C,(1-C5)+CCs | C,=Cp+Cs
(or 4) A, = ApA; A, = ApA;

Table 3.16: Texture functiondLEND and ADD.

ALPHA combiner function, six four-valued integers indicating thombinerRGB
and ALPHA source arguments, three four-valued integers indicatiegcombiner
RGB operands, three two-valued integers indicating the coerl®ihPHA operands,
and four floating-point environment color values. In thdiatistate, the texture
and combiner functions are eaRbBDULATE, the combineRGB andAL PHA sources
are eaClTEXTURE, PREVI OUS, andCONSTANT for sources 0, 1, and 2 respectively,
the combineRGB operands for sources 0 and 1 are eaRf COLOR, the combiner
RGB operand for source 2, as well as for the combiAePHA operands, are each
SRC_ALPHA, and the environment color {$, 0, 0, 0).

3.7.13 Texture Application

Texturing is enabled or disabled using the genEnable andDisablecommands,
with the symbolic constanTEXTURE 2D to enable or disable texturing, respec-
tively. If texturing is disabled, a rasterized fragment &sped on unaltered to the
next stage of the GL (although its texture coordinates maglibearded). Other-
wise, a texture value is found according to the parametearegabf the currently
bound texture imageusing the rules given in sections 3.7.6 through 3.7.8. This =
texture value is used along with the incoming fragment in potimg the texture
function indicated by the currently bound texture envir@mta The result of this
function replaces the incoming fragment’s primary R, G, Bd & values. These
are the color values passed to subsequent operations. (#teeassociated with
the incoming fragment remain unchanged, except that thiareexoordinates may
be discarded.

Version 1.1.10 (DRAFT - January 16, 2007)

3.8. FOG 96

Each texture unit is paired with an environment functiorsfaswvn in figure 3.9.
The second texture function is computed using the textulgevizom the second
texture, the fragment resulting from the first texture fumectcomputation and the
second texture unit’s environment function. If there isiedtiexture, the fragment
resulting from the second texture function is combined i third texture value
using the third texture unit's environment function and so ®he texture unit se-
lected byActiveTexture determines which texture unit’'s environment is modified
by TexEnv calls.

If the value of TEXTURE_ENV_MODE is COVBI NE, the texture function associated
with a given texture unit is computed using the values spastifiy SRCn_RGB,
SRCn_ALPHA, OPERANDN _RGB and OPERANDN _ALPHA.

Texturing is enabled and disabled individually for eachuexunit. If texturing
is disabled for one of the units, then the fragment resultiog the previous unit
is passed unaltered to the following unit.

The required state, per texture unit, is oneibdicating whether texturing is
enabled or disabled. In the initial stateexturing is disabled for all texture units.

3.8 Fog

If enabled, fog blends a fog color with a rasterized fragrisgmbst-texturing color
using a blending factof. Fog is enabled and disabled with tBeableandDisable
commands using the symbolic constan.

This factor f is computed according to one of three equations:

f=exp(—d-c), (3.22)
f=exp(—(d-c)?),or (3.23)
f= Z - z (3.24)

c is the eye-coordinate distance from the eie, 0, 1) in eye coordinates, to the
fragment center. The equation, along with eith@r e ands, is specified with

voi d Fog{xf}(enumpname T param);
voi d Fog{xf}v(enumpname T params);

If pnameis FOG.MODE, then param must be, orparamsmust point to an inte-

ger that is one of the symbolic constamsP, EXP2, or LI NEAR, in which case
equation 3.22, 3.23, or 3.24, respectively, is selectedHerfog calculation (if,

Version 1.1.10 (DRAFT - January 16, 2007)

4.1. PER-FRAGMENT OPERATIONS 100

Fragment Pixel
+ » . » Scissor » Alpha
Associated Ow_r:_:;ihlp Test Test

Depth Buffer < Stencil
Test Test

Framebuffer <J Framebuffer 45

Blending =] Dithering | Logicop Framl-guffer

Framebuffer J Framebuffer J

Figure 4.1. Per-fragment operations.

and conditions. We describe these modifications and testgrastnmed in Fig-
ure 4.1, in the order in which they are performed.

4.1.1 Pixel Ownership Test

The first test is to determine if the pixel at locati¢n,,, y,,) in the framebuffer
is currently owned by the GL (more precisely, by this GL catite If it is not,
the window system decides the fate of the incoming fragmiassible results are
that the fragment is discarded or that some subset of theequbat per-fragment
operations are applied to the fragment. This test allowswitrelow system to
control the GL's behavior, for instance, when a GL window iscured.

4.1.2 Scissor Test

The scissor test determines(if,,, y.,) lies within the scissor rectangle defined by
four values. These values are set with

voi d Scissof i nt left, i nt bottom si zei width,
si zei height);

Version 1.1.10 (DRAFT - January 16, 2007)

4.1. PER-FRAGMENT OPERATIONS 106

Function Blend Factors
(Sr, Sg, S, Sa) OF (D, Dy, Dy, Dg,)
(0,0,0,0)
(1,1,1,0)
(Rs,Gg, Bs, Ay)
ONE_M NUS_SRC.COLCR | (1,1,1,1) — (Rs, G, Bs, As)
DST_.COLOR (Rd,Gd By, Aq)
ONE_M NUS.DST_.COLOR | (1,1,1,1) — (Rgq, G4, Ba, Ag)
(
(
(
(
(

ZERO
ONE
SRC.COLOR

SRC_ALPHA Ag, Ag, Ag, Ag)

ONE_M NUS_SRCALPHA | (1,1,1,1) — (As, As, A, Ag)
Ag, Ad, Ad, Aa)

1,1,1,1) — (Ag, Ag, Ag, Ag)
LA

Table 4.1:RGB and ALPHA source and destination blending functions and the cor-

responding blend factors. Addition and subtraction isqaned component-wise.
L f =min(A,, 1 — Ay).

DST_ALPHA
ONE_M NUS_DST_ALPHA
SRC_ALPHA_SATURATE

Blending State

The state required for blending is two integers indicatimgsource and destination
blending and a bit indicating whether blending is enabledisabled. The initial
blending functions ar@NE for the source functions argERO for the destination
functions. Initially, blending is disabled.

Blending uses the color buffer selected for writing (sedisaet.2.1) using that
buffer’s color forCy. If a color buffer has no A value, theA, is taken to bd.

4.1.8 Dithering

Dithering selects between two color valu€onsider the value of any of the color =
components as a fixed-point value withbits to the left of the binary point, where
m is the number of bits allocated to that component in the fiarffer; call each
such value-. For eachr, dithering selects a valug such that; € {max{0, [c¢]| —
1}, [c]} (after this selection, treat; as a fixed point value in [0,1] witim bits).
This selection may depend on thg andy,, coordinates of the pixelc must not
be larger than the maximum value representable in the fraffezlfor either the
component or the index, as appropriate.

Many dithering algorithms are possible, but a dithered @gdtoduced by any
algorithm must depend only the incoming value and the fragimie andy window

Version 1.1.10 (DRAFT - January 16, 2007)

4.1. PER-FRAGMENT OPERATIONS 107

coordinates. If dithering is disabled, then each color congnt is truncated to a
fixed-point value with as many bits as there are in the comedimg component in
the framebulffer.

Dithering is enabled witkEnable and disabled witlDisableusing the symbolic
constantDl THER. The state required is thus a single bit. Initially, ditimgriis
enabled.

4.1.9 Logical Operation

Finally, a logical operation is applied between the incagrfirmgment’s color and
the color stored at the corresponding location in the framffeb The result re-
places the values in the framebuffer at the fragmdnt;s v,,) coordinates. Logical
operation on color values is enabled or disabled \Fittable or Disable using the
symbolic constanCOLOR LOG C_OP. If the logical operation is enabled for color
values, it is as if blending were disabled, regardless otétiee ofBLEND.

The logical operation is selected by

voi d LogicOp(enumaop);

opis a symbolic constant; the possible constants and come§pp operations are
enumerated in Table 4.2. In this tables the value of the incoming fragment and
d is the value stored in the framebuffer

Logical operations are performed independently for eadhgesen, blue, and
alpha value of each color buffer that is selected for writiige required state is an
integer indicating the logical operation, and two bits gading whether the logical
operation is enabled or disabled. The initial state is ferlthgic operation to be
given byCOPY, and to be disabled.

4.1.10 Additional Multisample Fragment Operations

If MULTI SAMPLE is enabled, and the value BAMPLE BUFFERS is one, the alpha
test, stencil test, depth test, blending, and ditheringaijfm:ns are performed for
each pixel sample, rather than just once for each fragmeaiture of the alpha,
stencil, or depth test results in termination of the processf that sample, rather
than discarding of the fragment. All operations are perfednon the color, depth,
and stencil values stored in the multisample buffer (to tecdeed in a following
section). The contents of the color buffer are not modifiettiatpoint.

Stencil, depth, blending, and dithering operations ardopeied for a pixel
sample only if that sample’s fragment coverage bit is a valug. If the corre-
sponding coverage bit is 0, no operations are performechédrdample.

Version 1.1.10 (DRAFT - January 16, 2007)

4.2. WHOLE FRAMEBUFFER OPERATIONS 109

4.2 Whole Framebuffer Operations

The preceding sections described the operations that asdadividual fragments
are sent to the framebuffer. This section describes opasthat control or affect
the whole framebuffer.

4.2.1 Selecting a Buffer for Writing

Color values are written into the front buffer for single fared contexts, or into
the back buffer for back buffered contexts. The type of cxiritedetermined when
creating a GL context.

4.2.2 Fine Control of Buffer Updates

Four commands are used to mask the writing of bits to eacheolodiical frame-
buffers after all per-fragment operations have been peréol. The command

voi d ColorMask(bool eanr, bool eang, bool ean b,
bool ean a);

controls the writing of R, G, B and A values to the color buffer g, b, anda
indicate whether R, G, B, or A values, respectively, aretemitor not (a value of
TRUE means that the corresponding value is written). In theahgtate, all color
values are enabled for writing.

The depth buffer can be enabled or disabled for writipgvalues using

voi d DepthMask(bool ean mask);

If maskis non-zero, the depth buffer is enabled for writing; othisayit is disabled.
In the initial state, the depth buffer is enabled for writing
The command

voi d StencilMask(ui nt mask);

controls the writing of particular bits into the stencil p&s. The least significant
bits of maskcomprise an integer mask is the number of bits in the stencil buffer).
The initial state is for the stencil plane mask to be all ones.

The state required for the masking operations is an integrestencil values
and a bit for depth values. A set of four bits is also requiratidgating which color
components of an RGBA value should be written. In the iniialte, the stencil
mask is all ones, as are the bits controlling depth value aB®8/&R component
writing.

Version 1.1.10 (DRAFT - January 16, 2007)

4.2. WHOLE FRAMEBUFFER OPERATIONS 110

Fine Control of Multisample Buffer Updates

When the value 06AMPLE BUFFERS is one,ColorMask, DepthMask, andSten-
cilMask control the modification of values in the multisample buff@ihe color
mask has no effect on modifications to the color buffer. Ifdbkr mask is entirely
disabled, the color sample values must still be combined€asribed above) and
the result used to replace values of the color buffer.

4.2.3 Clearing the Buffers

The GL provides a means for setting portions of every pixel jparticular buffer
to the same value. The argument to

voi d Clear(bi tfi el dbuf);

is the bitwise OR of a number of values indicating which #fare to
be cleared. The values ar@O.ORBUFFERBI T, DEPTHBUFFERBI T, and
STENCI L_BUFFER.BI T, indicating the color buffer, the depth buffer, and the sten
cil buffer, respectively. The value to which each buffer isacted depends on the
setting of the clear value for that buffer. If the mask is ndiilavise OR of the
specified values, then the erfoVALI D_VALUE is generated.

voi d ClearColor(cl anpf r, cl anmpf g, cl anpf b,
cl ampf a);

voi d ClearColorx(cl anmpxr, cl anpx g, cl anpx b,
cl ampx a);

sets the clear value for the color buffeleach of the specified components is =
clamped to[0,1] and converted to fixed-point according to the rules of sec-
tion 2.12.8.

voi d ClearDepthf(cl anpf d);
voi d ClearDepthx(cl anpx d);

takes a value that is clamped to the raffyé] and converted to fixed-point accord-
ing to the rules for a window value given in section 2.10.1. Similarly,

voi d ClearStencil(i nt s);
takes a single integer argument that is the value to whiclketar the stencil buffer.

sis masked to the number of bitplanes in the stencil buffer.

Version 1.1.10 (DRAFT - January 16, 2007)

4.3. READING PIXELS 111

When Clear is called, the only per-fragment operations that are agp(ie
enabled) are the pixel ownership test, the scissor testdginering. The masking
operations described in the last section (4.2.2) are afsctefe. If a buffer is not
present, then &lear directed at that buffer has no effect.

The state required for clearing is a clear value for each efdblor buffer,
the depth buffer, and the stencil buffer. Initially, the R&Bolor clear value is
(0,0,0,0), the stencil buffer clear value is 0, and the déptfer clear value is 1.0.

Clearing the Multisample Buffer

The color samples of the multisample buffer are cleared whercolor buffer is
cleared, as specified by tiidear mask bitCOLOR.BUFFERBI T.

If the Clear mask bitsDEPTH BUFFER BI T or STENCI L_BUFFER BI T are set,
then the corresponding depth or stencil samples, respdgtare cleared.

4.3 Reading Pixels

Pixels may be read from the framebuffer to client memory gigive ReadPixels
commands, as described below. Pixels may also be copieddient memory or
the framebuffer to texture images in the GL using Teglmage2DandCopyTex-
Image2D commands, as described in section 3.7.1.

4.3.1 Reading Pixels

The method for reading pixels from the framebuffer and plgdihem in client
memory is diagrammed in Figure 4.2. We describe the stagteegdixel reading
process in the order in which they occur.

Pixels are read using

voi d ReadPixelgi nt x, i nt y, si zei width, si zei height
enumformat enumtype voi d *data);

The arguments aftex andy to ReadPixelsare those described in section 3.6.2
defining pixel rectangles. Only two combinations fofmat and type are ac-
cepted. The first igormat RGBA and type UNSI GNED BYTE. The second is an =
implementation-chosen format from among those definedbtetd.4. The val-

ues offormat and type for this format may be determined by callir@etinte-

gerv with the symbolic constantsMPLEVENTATI ON_.COL OR_READ_FORMAT_CES

and | MPLEMENTATI ON.COLOR READ_TYPE_CES, respectively. The pixel storage
modes that apply tReadPixelsand other commands that query images (see sec-
tion 6.1) are summarized in Table 4.3.

Version 1.1.10 (DRAFT - January 16, 2007)

4.3. READING PIXELS 112

RGBA pixel data in _;

Convert to float

!

..... Yo

1 1
1Convert RGB to Ly

Pixel Storage
Clamp to [0,1] Operations
Pack

byte, short, or packed
pixel component data stream >

Figure 4.2. Operation dReadPixels Operations in dashed boxes may be enab
or disabled.

| Parameter Name | Type | Initial Value | Valid Range|
| PACKALI GNMVENT | integer | 4 | 1248 |

Table 4.3:PixelStore parameters pertaining ®eadPixels

Version 1.1.10 (DRAFT - January 16, 2007)

ed

6.1. QUERYING GL STATE 119

6.1.3 Enumerated Queries

Other commands exist to obtain state variables that ardiiidenby a category
(clip plane, light, material, etc.) as well as a symbolicgtant. These are

voi d GetClipPlane{xf}(enumplane T eqn[4]);
voi d GetLight{xf}v(enumlight, enumvalue T data);
voi d GetMaterial {xf}v(enumface enumvalue T data);
voi d GetTexEnWixf}v(enumeny, enumvalug T data);
voi d GetTexParametefixf }v(enumtarget enumvalue
T data);
voi d GetBufferParameteriv(enumtarget enumvalue
T data);

GetClipPlane always returns four values ieqn these are the coefficients of the
plane equation oplanein eye coordinates (these coordinates are those that were
computed when the plane was specified).

GetLight places information abowalue(a symbolic constant) fdight (also a
symbolic constant) inlata POSI TI ON or SPOT_DI RECTI ON returns values in eye
coordinates (again, these are the coordinates that werputechwhen the position
or direction was specified).

GetMaterial, GetTexEnv, GetTexParameter, andGetBufferParameter are
similar to GetLight, placing information aboutalue for the target indicated by
their first argument intalata The faceargument toGetMaterial must be either
FRONT or BACK, indicating the front or back material, respectively. Tdmeargu-
ment toGetTexEnv must beTEXTURE_ENV.

GetTexParameterparametetarget must beTEXTURE_2D, indicating the cur-
rently bound texture objectvalueis a symbolic value indicating which texture
parameter is to be obtained. FGretTexParameter, value must be one of the
symbolic values in table 3.13.

6.1.4 Texture Queries
The command
bool ean IsTexture(ui nt texture);

returnsTRUE if textureis the name of a texture object.téxtureis zero, or is a non-
zero value that is not the name of a texture object, or if aoreondition occurs,
IsTexture returnsFALSE. A hame returned bysenTextures but not yet bound, is
not the name of a texture object.

Version 1.1.10 (DRAFT - January 16, 2007)

6.1. QUERYING GL STATE 120

6.1.5 Pointer and String Queries

The command
voi d GetPointerv(enumpname voi d **params);

obtains the pointer or pointers namgalamein the arrayparams The possible
values for pname are VERTEX ARRAY_PO NTER, NORMAL _ARRAY_ PO NTER,
COLORARRAY_PO NTER, TEXTURE_COORD_ARRAY_PO NTER, and
PO NT_SI ZE_ARRAY_PO NTER CES. Each returns a single pointer value.
Finally,

ubyt e *GetString(enumname);

returns a pointer to a static string describing some aspettteocurrent GL con-
nection. The possible values faoameare VENDOR, RENDERER, VERSI ON, and
EXTENSI ONS. The format of thdRENDERER andVENDOR strings is implementation
dependent. Th&XTENSI ONS string contains a space separated list of extension
names (the extension names themselves do not contain args$ptheVERSI ON
string has the format

"OpenGL ES- XX N. M

whereXX s a two-character profile identifier, eith€Mfor the Common profile
or CL for the Common-List profile, and. Mare the major and minor version num-
bers of the OpenGL ES implementation, separated by a pesiocefitly1. 1).

GetString returns the version number (returned in W€RSI ON string) and
the extension names (returned in tBETENSI ONS string) that can be supported
on the connection. Thus, if the client and server suppofemdint versions and/or
extensions, a compatible version and list of extensionstigmed.

6.1.6 Buffer Object Queries
The command
bool ean IsBuffer(ui nt buffer);

returnsTRUE if bufferis the name of an buffer object. Wufferis zero, or ifbuffer
is a non-zero value that is not the name of an buffer objsBtffer returnFALSE.

Version 1.1.10 (DRAFT - January 16, 2007)

6.2. STATE TABLES

| Type code| Explanation

B Boolean
BMU Basic machine units
C Color (floating-point R, G, B, and A values)
T Texture coordinates (floating-poigt ¢, r, ¢ val-
ues)
N Normal coordinates (floating-point, i, = values)
v Vertex, including associated data
A Integer
zZt Non-negative integer
Zi, Zie | k-valued integerkx indicatesk is minimum)
R Floating-point number
R* Non-negative floating-point number
R[*Y | Floating-point number in the rande, b|
RF k-tuple of floating-point numbers
P Position (, y, z, w floating-point coordinates)
D Direction (z, y, z floating-point coordinates)
M* 4 x 4 floating-point matrix
I Image
Y Pointer (data type unspecified)
n X type | ncopies of typéype (n* indicatesn is minimum)

Table 6.1: State variable types

Version 1.1.10 (DRAFT - January 16, 2007)

122

("u09) ereq ARy XBUBA 'G'9 3|geL

(2002 ‘9T Arenuer - 14vHQ) OT T'T UOISIBA

Get Initial

Get value Type Cmnd Value Description Sec. Attribute
TEXTURE.COORDARRAY 2% xB IsEnabled False | Texture coordinate array enable 2.8 | vertex-array
TEXTURE.COORDARRAY _SIZE 2+ xZ T | Getlntegerv 4 Coordinates per element 2.8 | vertex-array
TEXTURE.COORDARRAY _TYPE 2% xZ4 | Getintegerv | FLOAT | Type of texture coordinates 2.8 | vertex-array
TEXTURE.COORDARRAY_STRIDE 2+ xZ T | Getlntegerv 0 Stride between texture coordinates 2.8 | vertex-array
TEXTURE.COORDARRAY_POINTER 2% xY | GetPointerv 0 Pointer to the texture coordinate 2.8 | vertex-array

array

& POINT.SIZE ARRAY_OES B IsEnabled False | Point size array enable 2.8 | vertex-array
& POINT.SIZE ARRAY TYPE OES Zo Getintegerv | FLOAT | Type of point sizes 2.8 | vertex-array
& POINT.SIZE ARRAY_STRIDE.OES A Getlintegerv 0 Stride between point sizes 2.8 | vertex-array
& POINT.SIZE ARRAY_POINTEROES Y GetPointerv 0 Pointer to the point size array 2.8 | vertex-array
ARRAY_BUFFERBINDING A Getlintegerv 0 current buffer binding 2.9 | vertex-array
VERTEX_ARRAY _BUFFERBINDING zZ+ Getlintegerv 0 vertex array buffer binding 2.9 | vertex-array
NORMAL ARRAY .BUFFERBINDING A Getlintegerv 0 normal array buffer binding 2.9 | vertex-array
COLOR ARRAY_BUFFERBINDING zZ+ Getlintegerv 0 color array buffer binding 2.9 | vertex-array
TEXTURE.COORDARRAY_BUFFERBINDING 2+ xZ*t | Getintegerv 0 texcoord array buffer binding 2.9 | vertex-array
& POINT.SIZE ARRAY_BUFFERBINDING .OES zZ+ Getlintegerv 0 point size array buffer binding 2.9 | vertex-array
ELEMENT.ARRAY .BUFFERBINDING A Getlintegerv 0 element array buffer binding 2.9.2 | vertex-array

S318V.L 31VIS 29

9T

A.3. INVARIANCE RULES 148

Writemasks (colgrdepth, stencil)

Clear values (colgrdepth, stencil)

o

Current values (colgrnormal, texture coords)

o

Material properties (ambient, diffuse, specular, emigsghininess)
Strongly suggested:

e Matrix mode

e Matrix stack depths

¢ Alpha test parameters (other than enable)

e Stencil parameters (other than enable)

e Depth test parameters (other than enable)

e Blend parameters (other than enable)

e Logical operation parameters (other than enable)
e Pixel storage

e Polygon offset parameters (other than enables, and excdpesy affect
the depth values of fragments)

Corollary 1 Fragment generation is invariant with respect to the statdues
marked withe in Rule 2.

Corollary 2 The window coordinates (X, y, and z) of generated fragmentalao
invariant with respect to

Required:

e Current values (colgrnormal, texture coords)
e Material properties (ambient, diffuse, specular, emigsghininess)

Rule 3 The arithmetic of each per-fragment operation is invariartept with re-
spect to parameters that directly control it (the paramstérat control the alpha
test, for instance, are the alpha test enable, the alphaftesttion, and the alpha
test reference value).

Corollary 3 Images rendered into different color buffers sharing themedrame-

buffer, either simultaneously or separately using the saammand sequence, are
pixel identical.

Version 1.1.10 (DRAFT - January 16, 2007)

Appendix B

Corollaries

The following observations are derived from the body andatier appendixes of
the specification. Absence of an observation from this figté way impugns its
veracity.

1.

The error semantics of upward compatible OpenGL ES m@visimay
change. Otherwise, only additions can be made to upward atibig re-
visions.

. GL query commands are not required to satisfy the sensatitheFlush

or theFinish commands. All that is required is that the queried state Ine co
sistent with complete execution of all previously execuBddcommands.

. Application specified point size and line width must beine¢d as specified

when queried. Implementation dependent clamping affées/alues only
while they are in use.

. The mask specified as the third argumergtencilFuncaffects the operands

of the stencil comparison function, but has no direct eftatthe update of
the stencil buffer. The mask specified ByencilMask has no effect on the
stencil comparison function; it limits the effect of the @pel of the stencil
buffer.

. A material property that is attached to the current colar@olorMaterial

always takes the value of the current color. Attempts to ghahat material
property viaMaterial calls have no effect.

. There is no atomicity requirement for OpenGL ES rendegngimands,

even at the fragment level.

150

7.

10.

11.

151

Because rasterization of non-antialiased polygons iist gampled, poly-
gons that have no area generate no fragments when they tegzes and
the fragments generated by the rasterization of “narrowgaans may not
form a continuous array.

. OpenGL ES does not force left- or right-handedness on &ityyabordinates

systems. Consider, however, the following conditions:tij€) object coordi-
nate system is right-handed; (2) the only commands used iipurate the
model-view matrix ar&cale(with positive scaling values onlyRotate, and
Translate; (3) exactly one of eithfrustum or Ortho is used to set the pro-
jection matrix; (4) the near value is less than the far vatwedfepthRange
If these conditions are all satisfied, then the eye coordisgstem is right-
handed and the clip, normalized device, and window cootdiggstems are
left-handed.

. (No pixel dropouts or duplicates.) Let two polygons shemedentical edge

(that is, there exist vertices A and B of an edge of one polygod vertices
C and D of an edge of the other polygon, and the coordinategméx A
(resp. B) are identical to those of vertex C (resp. D), andstage of the the
coordinate transfomations is identical when A, B, C, and & specified).
Then, when the fragments produced by rasterization of bothigpns are
taken together, each fragment intersecting the interiadghefshared edge is
produced exactly once.

The user defined clip planes, the spot directions, antightepositions for
LI GHT: are transformed when they are specified. They are not transfb
when copying a context.

Dithering algorithms may be different for different cpoments. In particu-
lar, alpha may be dithered differently from red, green, aebland an imple-
mentation may choose to not dither alpha at all.

Version 1.1.10 (DRAFT - January 16, 2007)

C.4. PACKAGING

Chris Tremblay, Motorola

Claude Knaus, Esmertec

Clay Montgomery, Nokia

Dan Petersen, Sun

Dan Rice, Sun

David Blythe 3d4w and HI

David Yoder, Motorola

Doug Twilleager, Sun

Ed Plowman, ARM

Graham Connor, Imagination Technologies
Greg Stoner, Motorola

Hannu Napari, Hybrid

Harri Holopainen, Hybrid

Jacob Strom, Ericsson

Jani Vaarala, Nokia

Jerry Evans, Sun

John Metcalfe, Imagination Technologies
Jon Leech, Silicon Graphics

Kari Pulli, Nokia

Lane Roberts, Symbian

Madhukar Budagavi, Texas Instruments
Mathias Agopian, PalmSource

Mark Callow, HI

Mark Tarlton, Motorola

Mike Olivarez, Motorola

Neil Trevett, 3Dlabs

Nick Triantos, Nvidia

Petri Kero, Hybrid

Petri Nordlund, Bitboys

Phil Huxley, Tao Group

Version 1.1.10 (DRAFT - January 16, 2007)

159

C.4. PACKAGING 160

Remi Arnaud, Sony Computer Entertainment
Robert Simpson, Bitboys

Tero SarkkinenFuturemark

Timo Suoranta, Futuremark

Thomas Tannert, Silicon Graphics

Tomi Aarnio, Nokia

Tom McReynolds, Nvidia

Tom Olson, Texas Instruments

Ville Miettinen, Hybrid Graphics

C.4.4 Document History

version 1.1.10, draft of 2007/01/05 Initial revision of the full specification,
based on the 1.1.09 diff specification.

version 1.1.10, draft of 2007/01/09 Add Khronos copyright page. Remove
COLOR matrix from section 2.10.2. Reorganized compresegtlite language
(section 3.7.3) and moved language specific to compresdetigubtextures into a
new section 3.7.4; added more detail of the format of conga@galetted tex-
tures in memory and specified th@ompressedTexSublmage2bmay not be
called for them. Removed state not present or not exposecpenGL ES , in-
cluding all texture level-specific parameters from sectoh.3, table 6.15 (state
per texture image), and the state table entrie<CfarOR MATERI AL_PARANVETER,
COLOR.MVATERI AL _FACE, TEXTURE.I NTENSI TY_SI ZE, TEXTURE_DEPTH.SI ZE,
DRAWBUFFER, READBUFFER, AUXBUFFERS, DOUBLEBUFFER, STEREOQ,
SMOOTH.POl NT_SI ZE_GRANULARI TY, andSMOOTH.LI NE_W DTH.GRANULARI TY.

version 1.1.10, draft of 2007/01/16 Numerous minor corrections from Tomi
Aarnio - add missing elements to tables (various data typesyt size array ver-

tex array state), remove lingering references to commapritsjtives (polygons),

functionality (texcoord generation, depth and intensagnfat textures, non-two-
dimensional textures, pixel rectangles, bitmaps, inddéaranode, evaluator maps,
attribute stacks, edge flags, point/line polygon mode lalsiists) not in OpenGL

ES, fix numerous typos

Version 1.1.10 (DRAFT - January 16, 2007)

