
2.1. OPENGL ES FUNDAMENTALS 6

agree pixel for pixel when presented with the same input evenwhen run on identi-
cal framebuffer configurations.

Finally, command names, constants, and types are prefixed inthe GL (bygl,
GL , andGL, respectively inC) to reduce name clashes with other packages. The
prefixes are omitted in this document for clarity.

2.1.1 Numeric Computation

The GL must perform a number of numeric computations during the course of its
operation.

Implementations of the Common profile will normally performcomputations
in floating-point, and must meet the range and precision requirements defined un-
der”Floating-Point Computation” below.

Implementations of the Common-Lite profile will normally perform computa-
tions in fixed-point, and must meet the more relaxed range andprecision require-
ments defined under”Fixed-Point Computation” below. However, Common-Lite
implementations are free to use floating-point computationif they wish.

Floating-Point Computation

We do not specify how floating-point numbers are to be represented or how
operations on them are to be performed. We require simply that numbers’ floating-
point parts contain enough bits and that their exponent fields are large enough
so that individual results of floating-point operations areaccurate to about1 part
in 105. The maximum representable magnitude of a floating-point number used
to represent positional or normal coordinates must be at least 232; the maximum
representable magnitude for colors or texture coordinatesmust be at least210. The
maximum representable magnitude for all other floating-point values must be at
least232. x · 0 = 0 · x = 0. 1 · x = x · 1 = x. x + 0 = 0 + x = x. 00 =
1. (Occasionally further requirements will be specified.) Most single-precision
floating-point formats meet these requirements.

Any representable floating-point value is legal as input to aGL command that
requires floating-point data. The result of providing a value that is not a floating-
point number to such a command is unspecified, but must not lead to GL interrup-
tion or termination. In IEEE arithmetic, for example, providing a negative zero or
a denormalized number to a GL command yields predictable results, while provid-
ing a NaN or an infinity yields unspecified results. The identities specified above
do not hold if the value ofx is not a floating-point number.

Fixed-Point Computation

Version 1.1.10 (DRAFT - April 4, 2007)

2.9. BUFFER OBJECTS 25

2.9.1 Vertex Arrays in Buffer Objects

Blocks of vertex array data may be stored in buffer objects with the same format
and layout options supported for client-side vertex arrays.

The client state associated with each vertex array type includes a buffer object
binding point. The commands that specify the locations and organizationsof vertex
arrays copy the buffer object name that is bound toARRAY BUFFER to the binding
point corresponding to the vertex array of the type being specified. For example,
the NormalPointer command copies the value ofARRAY BUFFER BINDING (the
queriable name of the buffer binding corresponding to the targetARRAY BUFFER)
to the client state variableNORMAL ARRAY BUFFER BINDING.

Rendering commandsDrawArrays andDrawElementsoperate as previously
defined, except that data for enabled vertexarrays are sourced from buffers if the
array’s buffer binding is non-zero. When an array is sourcedfrom a buffer object,
the pointer value of that array is used to compute an offset, in basic machine units,
into the data store of the buffer object. This offset is computed by subtracting a
null pointer from the pointer value, where both pointers aretreated as pointers to
basic machine units2.

It is acceptable for vertexarrays to be sourced from any combination of client
memory and various buffer objects during a single renderingoperation.

2.9.2 Array Indices in Buffer Objects

Blocks of array indices may be stored in buffer objects with the same format op-
tions that are supported for client-side index arrays. Initially zero is bound to
ELEMENT ARRAY BUFFER, indicating thatDrawElements is to source its indices
from arrays passed as theindices parameters.

A buffer object is bound toELEMENT ARRAY BUFFER by calling BindBuffer
with target set toELEMENT ARRAY BUFFER, andbuffer set to the name of the buffer
object. If no corresponding buffer object exists, one is initialized as defined in
section 2.9.

The commandsBufferData and BufferSubData may be used withtarget
set toELEMENT ARRAY BUFFER. In such event, these commands operate in the
same fashion as described in section 2.9, but on the buffer currently bound to the
ELEMENT ARRAY BUFFER target.

2To resume using client-side vertex arrays after a buffer object has been bound, callBind-
Buffer (ARRAY BUFFER,0) and then specify the client vertex array pointer using the appropriate
command from section 2.8.

Version 1.1.10 (DRAFT - April 4, 2007)

2.11. CLIPPING 35

the plane equation coefficients in eye coordinates. All points with eye coordinates
(xe ye ze we)T that satisfy

(p′1 p′2 p′3 p′4)









xe

ye

ze

we









≥ 0

lie in the half-space defined by the plane; points that do not satisfy this condition
do not lie in the half-space.

Client-defined clip planes are enabled with the genericEnable command and
disabled with theDisable command. The value of the argument to either com-
mand isCLIP PLANEi wherei is an integer between 0 andn; specifying a value
of i enables or disables the plane equation with indexi. The constants obey
CLIP PLANEi = CLIP PLANE0 + i.

If the primitive under consideration is a point, then clipping passes it un-
changed if it lies within the clip volume; otherwise, it is discarded.

If the primitive is a line segment, then clipping does nothing to it if it lies en-
tirely within the clip volume and discards it if it lies entirely outside the volume.
If part of the line segment lies in the volume and part lies outside, then the line
segment is clipped and new vertex coordinates are computed for one or both ver-
tices. A clipped line segment endpoint lies on both the original line segment and
the boundary of the clip volume.

This clipping produces a value,0 ≤ t ≤ 1, for each clipped vertex. If the
coordinates of a clipped vertex areP and the original vertices’ coordinates areP1

andP2, thent is given by

P = tP1 + (1 − t)P2.

The value oft is used in color and texture coordinate clipping (section 2.12.7).
If the primitive is a triangle, then it is passed if every one of its edges lies

entirely inside the clip volume and either clipped or discarded otherwise. Clip-
ping may cause triangle edges to be clipped, but because connectivity must be
maintained, these clipped edges are connected by new edges that lie along the clip
volume’s boundary. Thus, clipping may require the introduction of new vertices
into a triangle, creating a more generalpolygon.

If it happens that a triangle intersects an edge of the clip volume’s boundary,
then the clipped triangle must include a point on this boundary edge.

A line segment or triangle whose vertices havewc values of differing signs may
generate multiple connected components after clipping. GLimplementations are

Version 1.1.10 (DRAFT - April 4, 2007)

2.12. COLORS AND COLORING 45

Let the colors assigned to the two verticesP1 andP2 of an unclipped edge be
c1 andc2. The value oft (section 2.11) for a clipped pointP is used to obtain the
color associated withP as4

c = tc1 + (1 − t)c2.

(Multiplying a color by a scalar means multiplying each of R,G, B, and A by
the scalar.) Polygon clipping may create a clipped vertex along an edge of the
clip volume’s boundary. This situation is handled by notingthat polygon clipping
proceeds by clipping against one plane of the clip volume’s boundary at a time.
Color clipping is done in the same way, so that clipped pointsalways occur at the
intersection of polygon edges (possibly already clipped) with the clip volume’s
boundary.

Texture coordinates must also be clipped when a primitive isclipped. The
method is exactly analogous to that used for color clipping.

2.12.8 Final Color Processing

Each color component (which lies in[0, 1]) is converted (by rounding to nearest)
to a fixed-point value withm bits. We assume that the fixed-point representation
used represents each valuek/(2m − 1), wherek ∈ {0, 1, . . . , 2m − 1}, ask (e.g.
1.0 is represented in binary as a string of all ones).m must be at least as large as
the number of bits in the corresponding component of the framebuffer.m must be
at least 2 for A if the framebuffer does not contain an A component, or if there is
only 1 bit of A in the framebuffer.

Because a number of the formk/(2m − 1) may not be represented exactly as
a limited-precision floating-point quantity, we place a further requirement on the
fixed-point conversion of color components. Suppose that lighting is disabled, the
color associated with a vertex has not been clipped, and the color was specified with
unsigned byte or integer values. When these conditions are satisfied, an RGBA
component must convert to a value that matches the componentas specified in
the command defining it: ifm is less than the number of bitsb with which the
component was specified, then the converted value must equalthe most significant
m bits of the specified value; otherwise, the most significantb bits of the converted
value must equal the specified value.

4Since this computation is performed in clip space before division by wc, clipped colors and
texture coordinates are perspective-correct.

Version 1.1.10 (DRAFT - April 4, 2007)

C.4. PACKAGING 160

version 1.1.10, draft of 2007/02/06 Noted in section 2.10.3 that normal vectors
are treated as row vectors transformed by matrix postmultiplication, which may be
unfamiliar to some graphics programmers. Removed X Window System trademark
information from the copyright pages.

version 1.1.10, draft of 2007/03/31 Document scaling of integer to fixed-point
parameters. Polygon smooth mode is not supported. Front andback material col-
ors exist in terms of the API, but are constrained to always have the same val-
ues. General polygons are not supported. Remove referencesto texture borders.
Many other minor fixes and clarifications from WG review - see Khronos member
Bugzilla bugs 1247, 1257, 1258, 1259.

version 1.1.10, draft of 2007/04/04 Clarify that floating-point identities do not
hold for infinite or NaN values in section 2.1.1. Remove advice about preferred
vertex buffer object formats in section 2.9.1. Mandate point sprite clipping (do not
allow scissoring) in section 2.11, pending Working Group resolution of the open
issue. Clarify that color and texture coordinate clipping defined in section 2.12.7
is already perspective correct.

Version 1.1.10 (DRAFT - April 4, 2007)

