
2.10. COORDINATE TRANSFORMATIONS 32

Specifying an invalidtexture generates the errorINVALID ENUM. Valid values
of texture are the same as for theMultiTexCoord commands described in sec-
tion 2.7.

There is a stack of matrices for each of matrix modesMODELVIEW and
PROJECTION, and for each texture unit. ForMODELVIEW mode, the stack depth
is at least 16 (that is, there is a stack of at least 16 model-view matrices). For the
other modes, the depth is at least2. Texture matrix stacks for all texture units have
the same depth. The current matrix in any mode is the matrix onthe top of the
stack for that mode.

void PushMatrix(void);

pushes the stack down by one, duplicating the current matrixin both the top of the
stack and the entry below it.

void PopMatrix(void);

pops the top entry off of the stack, replacing the current matrix with the matrix
that was the second entry in the stack. The pushing or poppingtakes place on the
stack corresponding to the current matrix mode. Popping a matrix off a stack with
only one entry generates the errorSTACK UNDERFLOW; pushing a matrix onto a full
stack generatesSTACK OVERFLOW.

When the current matrix mode isTEXTURE, the texture matrix stack of the
active texture unit is pushed or popped.

The state required to implement transformations consists of an integer for the
active texture unit selector, a four-valued integer indicating the current matrix
mode, one stack of at least two4 × 4 matrices for each ofPROJECTION and each
texture unit,TEXTURE; and a stack of at least 164 × 4 matrices forMODELVIEW.
Each matrix stack has an associated stack pointer. Initially, there is only one matrix
on each stack, and all matrices are set to the identity. The initial active texture unit
selector isTEXTURE0, and the initial matrix mode isMODELVIEW.

2.10.3 Normal Transformation

Finally, we consider how the model-view matrix and transformation state affect
normals. Before use in lighting, normals are transformed toeye coordinates by a
matrix derived from the model-view matrix. Rescaling and normalization opera-
tions are performed on the transformed normals to make them unit length prior to
use in lighting. Rescaling and normalization are controlled by

void Enable(enum target);

Version 1.1.10 (DRAFT - January 9, 2007)

3.7. TEXTURING 79

relationships generates the errorINVALID VALUE:

x < 0

x + w > ws

y < 0

y + h > hs

Counting from zero, thenth pixel group is assigned to the texel with internal integer
coordinates[i, j], where

i = x + (n mod w)

j = y + (⌊
n

w
⌋ mod h)

3.7.3 Compressed Texture Images

Texture images may also be specified or modified using image data already stored
in a known compressed image format. The GL defines some specific com-
pressed formats, and others may be defined by GL extensions. There is a mech-
anism to obtain token values for compressed formats; the number of specific
compressed internal formats supported can be obtained by querying the value
of NUM COMPRESSED TEXTURE FORMATS. The set of specific compressed inter-
nal formats supported by the renderer can be obtained by querying the value
of COMPRESSED TEXTURE FORMATS. The only values returned by this query are
those corresponding tointernalformat parameters accepted byCompressedTex-
Image2D and suitable for general-purpose usage. The renderer will not enumerate
formats with restrictions that need to be specifically understood prior to use.

The command

void CompressedTexImage2D(enum target, int level,
enum internalformat, sizei width, sizei height,
int border, sizei imageSize, void *data);

defines a two-dimensional texture image, with incoming datastored in a specific
compressed image format. Thetarget, level, internalformat, width, height, and
border parameters have the same meaning as inTexImage2D. data points to com-
pressed image data stored in the compressed image format corresponding tointer-
nalformat.

For all compressed internal formats, the compressed image will be decoded ac-
cording to the definition ofinternalformat. Compressed texture images are treated

Version 1.1.10 (DRAFT - January 9, 2007)

3.7. TEXTURING 80

as an array ofimageSize ubytes beginning at addressdata. All pixel storage and
pixel transfer modes are ignored when decoding a compressedtexture image. If the
imageSize parameter is not consistent with the format, dimensions, and contents of
the compressed image, anINVALID VALUE error results. If the compressed image
is not encoded according to the defined image format, the results of the call are
undefined.

Specific compressed internal formats may impose format-specific restrictions
on the use of the compressed image specification calls or parameters. For example,
the compressed image format might not allowwidth or height values that are not a
multiple of 4. Any such restrictions will be documented in the extension specifica-
tion defining the compressed internal format; violating these restrictions will result
in anINVALID OPERATION error.

Any restrictions imposed by specific compressed internal formats will be in-
variant with respect to image contents, meaning that if the GL accepts and stores
a texture image in compressed form,CompressedTexImage2D will accept any
properly encoded compressed texture image of the same width, height, compressed
image size, and compressed internal format for storage at the same texture level.

The specific compressed texture formats supported byCompressedTexIm-
age2D, and the corresponding base internal format for each specific format, are
defined in table 3.10.

Compressed Texture FormatBase Internal Format

PALETTE4 RGB8 OES RGB

PALETTE4 RGBA8 OES RGBA

PALETTE4 R5 G6 B5 OES RGB

PALETTE4 RGBA4 OES RGBA

PALETTE4 RGB5 A1 OES RGBA

PALETTE8 RGB8 OES RGB

PALETTE8 RGBA8 OES RGBA

PALETTE8 R5 G6 B5 OES RGB

PALETTE8 RGBA4 OES RGBA

PALETTE8 RGB5 A1 OES RGBA

Table 3.10: Specific compressed texture formats.

Respecifying Subimages of Compressed Textures

The commands

Version 1.1.10 (DRAFT - January 9, 2007)

3.7. TEXTURING 81

void CompressedTexSubImage2D(enum target, int level,
int xoffset, int yoffset, sizei width, sizei height,
enum format, sizei imageSize, void *data);

respecify only a rectangular region of an existing texture array, with incoming data
stored in a known compressed image format. Thetarget, level, xoffset, yoffset,
width, height, and format parameters have the same meaning as inTexSubIm-
age2D. data points to compressed image data stored in the compressed image for-
mat corresponding toformat.

The image pointed to bydata and theimageSize parameter is interpreted as
though it was provided toCompressedTexImage2D. This command does not pro-
vide for image format conversion, so anINVALID OPERATION error results iffor-
mat does not match the internal format of the texture image beingmodified. If the
imageSize parameter is not consistent with the format, dimensions, and contents
of the compressed image (too little or too much data), anINVALID VALUE error
results.

As with CompressedTexImage calls, compressed internal formats may have
additional restrictions on the use of the compressed image specification calls or
parameters. Any such restrictions will be documented in thespecification defin-
ing the compressed internal format; violating these restrictions will result in an
INVALID OPERATION error.

Any restrictions imposed by specific compressed internal formats will be in-
variant with respect to image contents, meaning that if the GL accepts and stores a
texture image in compressed form,CompressedTexSubImage2D will accept any
properly encoded compressed texture image of the same width, height, compressed
image size, and compressed internal format for storage at the same texture level.

Calling CompressedTexSubImage2D will result in anINVALID OPERATION

error if xoffset or yoffset is not equal to zero (border width), or ifwidth andheight
do not match the values ofTEXTURE WIDTH andTEXTURE HEIGHT respectively.
The contents of any texel outside the region modified by the call are undefined.
These restrictions may be relaxed for specific compressed internal formats whose
images are easily modified.

3.7.4 Compressed Paletted Textures

If internalformat is PALETTE4 RGB8, PALETTE4 RGBA8, PALETTE4 R5 G6 B5,
PALETTE4 RGBA4, PALETTE4 RGB5 A1, PALETTE8 RGB8, PALETTE8 RGBA8,
PALETTE8 R5 G6 B5, PALETTE8 RGBA4, or PALETTE8 RGB5 A1, the com-
pressed texture is a compressed paletted texture.data contains the palette data
following by the mipmap levels, where the number of mipmap levels stored is

Version 1.1.10 (DRAFT - January 9, 2007)

3.7. TEXTURING 82

given by|level| + 1. The number of bits that represent a texel is 4 bits ifinteral-
format is PALETTE4 * and is 8 bits ifinternalformat is PALETTE8 *.

The palette data is formatted as an image containing 16 (forPALETTE4 *) or
256 (forPALETTE8 *) palette entries (pixels). The equivalentformat andtype of
each palette entry is shown in table 3.11.

Compressed Texture FormatPalette entry Palette entry
format type

PALETTE4 RGB8 OES RGB UNSIGNED BYTE

PALETTE4 RGBA8 OES RGBA UNSIGNED BYTE

PALETTE4 R5 G6 B5 OES RGB UNSIGNED SHORT 5 6 5

PALETTE4 RGBA4 OES RGBA UNSIGNED SHORT 4 4 4 4

PALETTE4 RGB5 A1 OES RGBA UNSIGNED SHORT 5 5 5 1

PALETTE8 RGB8 OES RGB UNSIGNED BYTE

PALETTE8 RGBA8 OES RGBA UNSIGNED BYTE

PALETTE8 R5 G6 B5 OES RGB UNSIGNED SHORT 5 6 5

PALETTE8 RGBA4 OES RGBA UNSIGNED SHORT 4 4 4 4

PALETTE8 RGB5 A1 OES RGBA UNSIGNED SHORT 5 5 5 1

Table 3.11: Palette entry pixel formats.

Image data immediately follows the palette image. Each mipmap level im-
age present in the image data immediately follows the previous level, starting
with mipmap level zero and proceeding through the number of levels defined by
|level| + 1. Texels within each mipmap level image are formatted as shown in
table 3.12 and are packed contiguously starting at the lowerleft.

PALETTE4 *:

7 6 5 4 3 2 1 0

1st texel 2nd texel

PALETTE8 *:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

Table 3.12: Texel data formats for compressed paletted textures.

If a compressed paletted texture is specified with a positivelevel argument to

Version 1.1.10 (DRAFT - January 9, 2007)

3.7. TEXTURING 83

Name Type Legal Values

TEXTURE WRAP S integer CLAMP TO EDGE, REPEAT
TEXTURE WRAP T integer CLAMP TO EDGE, REPEAT
TEXTURE MIN FILTER integer NEAREST,

LINEAR,
NEAREST MIPMAP NEAREST,
NEAREST MIPMAP LINEAR,
LINEAR MIPMAP NEAREST,
LINEAR MIPMAP LINEAR,

TEXTURE MAG FILTER integer NEAREST,
LINEAR

GENERATE MIPMAP boolean TRUE or FALSE

Table 3.13: Texture parameters and their values.

TexImage2D, anINVALID VALUE error is generated.
Subimages may not be specified for compressed paletted textures. Calling

CompressedTexSubImage2D with any of thePALETTE* arguments in table 3.11
will generate anINVALID OPERATION error.

3.7.5 Texture Parameters

Various parameters control how the texture array is treatedwhen specified or
changed, and when applied to a fragment. Each parameter is set by calling

void TexParameter{ixf}(enum target, enum pname,
T param);

void TexParameter{ixf}v(enum target, enum pname,
T params);

target is the target, which must beTEXTURE 2D. pname is a symbolic constant indi-
cating the parameter to be set; the possible constants and corresponding parameters
are summarized in table 3.13. In the first form of the command,param is a value
to which to set a single-valued parameter; in the second formof the command,
params is an array of parameters whose type depends on the parameterbeing set.

If the value of texture parameterGENERATE MIPMAP is TRUE, specifying or
changing texture arrays may have side effects, which are discussed in theAuto-
matic Mipmap Generation discussion of section 3.7.7.

Version 1.1.10 (DRAFT - January 9, 2007)

6.1. QUERYING GL STATE 122

6.1.3 Enumerated Queries

Other commands exist to obtain state variables that are identified by a category
(clip plane, light, material, etc.) as well as a symbolic constant. These are

void GetClipPlane{xf}(enum plane, T eqn[4]);
void GetLight{xf}v(enum light, enum value, T data);
void GetMaterial{xf}v(enum face, enum value, T data);
void GetTexEnv{ixf}v(enum env, enum value, T data);
void GetTexParameter{ixf}v(enum target, enum value,

T data);
void GetBufferParameteriv(enum target, enum value,

T data);

GetClipPlane always returns four values ineqn; these are the coefficients of the
plane equation ofplane in eye coordinates (these coordinates are those that were
computed when the plane was specified).

GetLight places information aboutvalue (a symbolic constant) forlight (also a
symbolic constant) indata. POSITION or SPOT DIRECTION returns values in eye
coordinates (again, these are the coordinates that were computed when the position
or direction was specified).

GetMaterial, GetTexEnv, GetTexParameter, andGetBufferParameter are
similar to GetLight, placing information aboutvalue for the target indicated by
their first argument intodata. The face argument toGetMaterial must be either
FRONT or BACK, indicating the front or back material, respectively. Theenv argu-
ment toGetTexEnv must beTEXTURE ENV.

GetTexParameter parametertarget must beTEXTURE 2D, indicating the cur-
rently bound texture object.value is a symbolic value indicating which texture
parameter is to be obtained. ForGetTexParameter, value must be one of the
symbolic values in table 3.13.

6.1.4 Texture Queries

The command

boolean IsTexture(uint texture);

returnsTRUE if texture is the name of a texture object. Iftexture is zero, or is a non-
zero value that is not the name of a texture object, or if an error condition occurs,
IsTexture returnsFALSE. A name returned byGenTextures, but not yet bound, is
not the name of a texture object.

Version 1.1.10 (DRAFT - January 9, 2007)

C.4. PACKAGING 163

Remi Arnaud, Sony Computer Entertainment

Robert Simpson, Bitboys

Tero Sarkinnen, Futuremark

Timo Suoranta, Futuremark

Thomas Tannert, Silicon Graphics

Tomi Aarnio, Nokia

Tom McReynolds, Nvidia

Tom Olson, Texas Instruments

Ville Miettinen, Hybrid Graphics

C.4.4 Document History

version 1.1.10, draft of 2007/01/05 Initial revision of the full specification,
based on the 1.1.09 diff specification.

version 1.1.10, draft of 2007/01/09 Add Khronos copyright page. Remove
COLOR matrix from section 2.10.2. Reorganized compressed texture language
(section 3.7.3) and moved language specific to compressed paletted textures into a
new section 3.7.4; added more detail of the format of compressed paletted tex-
tures in memory and specified thatCompressedTexSubImage2D may not be
called for them. Removed state not present or not exposed in OpenGL ES , in-
cluding all texture level-specific parameters from section6.1.3, table 6.15 (state
per texture image), and the state table entries forCOLOR MATERIAL PARAMETER,
COLOR MATERIAL FACE, TEXTURE INTENSITY SIZE, TEXTURE DEPTH SIZE,
DRAW BUFFER, READ BUFFER, AUX BUFFERS, DOUBLEBUFFER, STEREO,
SMOOTH POINT SIZE GRANULARITY, andSMOOTH LINE WIDTH GRANULARITY.

Version 1.1.10 (DRAFT - January 9, 2007)

