
1.3. OPENGL ES PROFILES 2

moves a great deal of redundant and legacy functionality, while adding a few new
features. The differences between OpenGL ES and OpenGL are not described in
detail in this specification; however, they are summarized in a companion docu-
ment titledOpenGL ES Common/Common-Lite Profile Specification (diff specifi-
cation). 1

1.3 OpenGL ES Profiles

There are twoprofiles defined for OpenGL ES : Common and Common-Lite.
While many commands are shared by both profiles, some commands are only sup-
ported by one profile.

The Common-Lite profile differs from the Common profile primarily in being
targeted at a simpler class of graphics system not supporting high-performance
floating-point calculations. OpenGL ES commands taking floating-point argu-
ments in the Common profile are replaced by equivalent commands taking fixed-
point arguments.

Specific differences between the two profiles, including a summary of
commandsonly supported in the Common profile, are documented in Appendix C
and in appropriate sections of the specification.

1.4 Programmer’s View of OpenGL ES

To the programmer, OpenGL ES is a set of commands that allow the specification
of geometric objects in two or three dimensions, together with commands that
control how these objects are rendered into the framebuffer. OpenGL ES provides
an immediate-mode interface, meaning that specifying an object causes it to be
drawn.

A typical program that uses OpenGL ES begins with calls to open a window
into the framebuffer into which the program will draw. Then,calls are made to
allocate an OpenGL ES context and associate it with the window. These steps
are performed using a companion API, the Khronos Native Platform Graphics In-
terface (EGL), which is documented separately. Once a context is allocated, the
programmer is free to issue OpenGL ES commands. Some calls are used to draw
simple geometric objects (i.e. points, line segments, and polygons), while oth-
ers affect the rendering of these primitives including how they are lit or colored
and how they are mapped from the user’s two- or three-dimensional model space

1I suggest we retain the diff spec, slightly retitled, for this purpose if no other.

Version 1.1.10 (DRAFT - January 16, 2007)

2.1. OPENGL ES FUNDAMENTALS 5

viously invoked GL commands. In general, the effects of a GL command on either
GL modes or the framebuffer must be complete before any subsequent command
can have any such effects.

In the GL, data binding occurs on call. This means that data passed to a com-
mand are interpreted when that command is received. Even if the command re-
quires a pointer to data, those data are interpreted when thecall is made, and any
subsequent changes to the data have no effect on the GL (unless the same pointer
is used in a subsequent command).

The GL provides direct control over the fundamental operations of 3D and 2D
graphics. This includes specification of such parameters astransformation matri-
ces, lighting equation coefficients, antialiasing methods, and pixel update opera-
tors. It does not provide a means for describing or modeling complex geometric
objects. Another way to describe this situation is to say that the GL provides mech-
anisms to describe how complex geometric objects are to be rendered rather than
mechanisms to describe the complex objects themselves.

The model for interpretation of GL commands is client-server. That is, a pro-
gram (the client) issues commands, and these commands are interpreted and pro-
cessed by the GL (the server). A server may maintain a number of GL contexts,
each of which is an encapsulation of current GL state. A client may choose tocon-
nectto any one of these contexts. Issuing GL commands when the program is not
connectedto acontextresults in undefined behavior.

The effects of GL commands on the framebuffer are ultimatelycontrolled by
the window system that allocates framebuffer resources. Itis the window system
that determines which portions of the framebuffer the GL mayaccess at any given
time and that communicates to the GL how those portions are structured. There-
fore, there are no GL commands to configure the framebuffer orinitialize the GL.
Similarly, display of framebuffer contents on a monitor or LCD panel(including
the transformation of individual framebuffer values by such techniques as gamma
correction) is not addressed by the GL. Framebuffer configuration occurs outside
of the GL in conjunction with the window system; the initialization of a GL con-
text occurs when the window system allocates a window for GL rendering. The
EGL API defines a portable mechanism for creating GL contextsand windows for
rendering into, which may be used in conjunction with different native platform
window systems.

The GL is designed to be run on a range of graphics platforms with varying
graphics capabilities and performance. To accommodate this variety, we specify
ideal behavior instead of actual behavior for certain GL operations. In cases where
deviation from the ideal is allowed, we also specify the rules that an implemen-
tation must obey if it is to approximate the ideal behavior usefully. This allowed
variation in GL behavior implies that two distinct GL implementations may not

Version 1.1.10 (DRAFT - January 16, 2007)

2.4. BASIC GL OPERATION 10

GL Type Minimum Description
Bit Width

boolean 1 Boolean
byte 8 signed binary integer
ubyte 8 unsigned binary integer
short 16 signed 2’s complement binary integer
ushort 16 unsigned binary integer
int 32 signed 2’s complement binary integer
uint 32 unsigned binary integer
fixed 32 signed 2’s complement S15.16 scaled

integer
clampx 32 S15.16 scaled integer clamped to

[0, 1]

sizei 32 Non-negative binary integer size
enum 32 Enumerated binary integer value
intptr ptrbits signed 2’s complement binary integer
sizeiptr ptrbits Non-negative binary integer size
bitfield 32 Bit field
float 32 Floating-point value
clampf 32 Floating-point value clamped to[0, 1]

Table 2.2: GL data types. GL types are not C types. Thus, for example, GL
type int is referred to asGLint outside this document, and is not necessarily
equivalent to the C typeint. An implementation may use more bits than the
number indicated in the table to represent a GL type. Correctinterpretation of
integer values outside the minimum range is not required, however.
ptrbits is the number of bits required to represent a pointer type; inother words,
typesintptr andsizeiptrmust be sufficiently large as to store any address.

Version 1.1.10 (DRAFT - January 16, 2007)

2.5. GL ERRORS 12

2.5 GL Errors

The GL detects only a subset of those conditions that could beconsidered errors.
This is because in many cases error checking would adverselyimpact the perfor-
mance of an error-free program.

The command

enum GetError (void);

is used to obtain error information. Each detectable error is assigned a numeric
code. When an error is detected, a flag is set and the code is recorded. Further
errors, if they occur, do not affect this recorded code. WhenGetError is called,
the code is returned and the flag is cleared, so that a further error will again record
its code. If a call toGetError returnsNO ERROR, then there has been no detectable
error since the last call toGetError (or since the GL was initialized).

To allow for distributed implementations, there may be several flag-code pairs.
In this case, after a call toGetError returns a value other thanNO ERROR each
subsequent call returns the non-zero code of a distinct flag-code pair (in unspecified
order), until all non-NO ERROR codes have been returned. When there are no more
non-NO ERROR error codes, all flags are reset. This scheme requires some positive
number of pairs of a flag bit and an integer. The initial state of all flags is cleared
and the initial value of all codes isNO ERROR.

Table 2.3 summarizes GL errors. Currently, when an error flagis set, results of
GL operation are undefined only ifOUT OF MEMORY has occurred. In other cases,
the command generating the error is ignored so that it has no effect on GL state or
framebuffer contents. If the generating command returns a value, it returns zero. If
the generating command modifies values through a pointer argument, no change is
made to these values. These error semantics apply only to GL errors, not to system
errors such as memory access errors. This behavior is the current behavior; the
action of the GL in the presence of errors is subject to change.

Three error generation conditions are implicit in the description of every GL
command. First, if a command that requires an enumerated value is passed a sym-
bolic constant that is not one of those specified as allowablefor that command, the
errorINVALID ENUM results. This is the case even if the argument is a pointer to
a symbolic constant if that value is not allowable for the given command. Using
a symbolic constant in one of the Common or Common-Lite profiles when that

constant is only defined to be accepted by the other profile will also result in the
errorINVALID ENUM.

Second, if a negative number is provided where an argument oftypesizei is
specified, the errorINVALID VALUE results.

Version 1.1.10 (DRAFT - January 16, 2007)

2.6. PRIMITIVES AND VERTICES 13

Error Description Offending com-
mand ignored?

INVALID ENUM enum argument out of range Yes
INVALID VALUE Numeric argument out of range Yes
INVALID OPERATION Operation illegal in current state Yes
STACK OVERFLOW Command would cause a stack

overflow
Yes

STACK UNDERFLOW Command would cause a stack
underflow

Yes

OUT OF MEMORY Not enough memory left to exe-
cute command

Unknown

Table 2.3: Summary of GL errors

Finally, if memory is exhausted as a side effect of the execution of a command,
the errorOUT OF MEMORY may be generated. Otherwise errors are generated only
for conditions that are explicitly described in this specification.

2.6 Primitives and Vertices

In the GL, geometric objects are drawn by specifying a seriesof coordinate sets
that include vertices and optionally normals, texture coordinates, and colors. Co-
ordinate sets are specified using vertex arrays (see section2.8). There are seven
geometric objects that are drawn this way: points (including point sprites), con-
nected line segments (line strips), line segment loops, separated line segments,
triangle strips, triangle fans, and separated triangles.

Each vertex is specified with two, three, or four coordinates. In addition, a
current normal, multiple current texture coordinate sets, andcurrent color may
be used in processing each vertex. Normals are used by the GL in lighting cal-
culations; the current normal is a three-dimensional vector that may be set by
sending three coordinates that specify it. Texture coordinates determine how a
texture image is mapped onto a primitive. Multiple sets of texture coordinates
may be used to specify how multiple texture images are mappedonto a primitive.
The number of texture units supported is implementation dependent but must be
at least two. The number of texture units supported can be queried with the state
MAX TEXTURE UNITS.

A color is associated with each vertex. This color is either based on the current
color or produced by lighting, depending on whether or not lighting is enabled.

Version 1.1.10 (DRAFT - January 16, 2007)

2.6. PRIMITIVES AND VERTICES 14

Texture coordinates are similarly associated with each vertex. Multiple sets of
texture coordinates may be associated with a vertex. Figure2.2 summarizes the as-
sociation of auxiliary data with a transformed vertex to produce aprocessed vertex.

The current values are part of GL state. Vertices, normals, and texture co-
ordinates are transformed. Colors may be affected or replaced by lighting. The
processing indicated for each current value is applied for each vertex that is sent to
the GL.

The methods by which vertices, normals, texture coordinates, and colors are
sent to the GL, as well as how normals are transformed and how vertices are
mapped to the two-dimensional screen, are discussed later.

Before colors have been assigned to a vertex, the state required by a vertex
is the vertex’s coordinates, its normal, the current material properties (see sec-
tion 2.12.2), and its multiple texture coordinate sets. Because color assignment is
done vertex-by-vertex, a processed vertex comprises the vertex’s coordinates, its
assigned colors, and its multiple texture coordinate sets.

Figure 2.3 shows the sequence of operations that builds aprimitive (point, line
segment, or triangle) from a sequence of vertices. After a primitive is formed, it
is clipped to a viewing volume. This may alter the primitive by altering vertex
coordinates, texture coordinates, and colors. In the case of line and triangle prim-
itives, clipping may insert new vertices into the primitive. The vertices defining a
primitive to be rasterized have texture coordinates and colors associated with them.

2.6.1 Primitive Types

A sequence of vertices is passed to the GL using the commandsDrawArrays or
DrawElements (see section 2.8). There is no limit to the number of verticesthat
may be specified, other than the size of the vertex arrays.

The modeparameter of these commands determines the type of primitives to
be drawn using these coordinate sets. The types, and the correspondingmode
parameters, are:

Points. A series of individual points may be specified withmodePOINTS.
Each vertex defines a separate point or point sprite.

Line Strips. A series of one or more connected line segments may be specified
with modeLINE STRIP. At least two vertices must be provided. In this case, the
first vertex specifies the first segment’s start point while the second vertex specifies
the first segment’s endpoint and the second segment’s start point. In general, the
ith vertex (fori > 1) specifies the beginning of theith segment and the end of the
i − 1st. The last vertex specifies the end of the last segment. If only one vertex is
specified, then no primitive is generated.

Version 1.1.10 (DRAFT - January 16, 2007)

2.8. VERTEX ARRAYS 21

When an array elementi is transferred to the GL by theDrawArrays or
DrawElementscommands, each enabled array is treated differently.

For the vertex array, ifsizeis two then thex andy coordinates of the vertex are
specified by the array; thez andw coordinates are implicitly set to zero and one,
respectively. Ifsizeis three thenx, y, andz are specified andw is implicitly set to
one. Ifsizeis four then all coordinates are specified, allowing the definition of an
arbitrary point in projective space.

For the color array, ifsizeis three then theA component is implicitly set to 1.
If sizeis four then all components are specified. If the color array is not enabled,
then the current color defined by theColor commands is used.

For the normal array, all three coordinates are always specified. Byte, short,
or integer values are converted to floating-point values as indicated for the corre-
sponding (signed) type in indicated for the corresponding (signed) type in table 2.7.
If the normal array is not enabled, then the current normal defined by theNormal
commands is used.

For the point size array, the single size is always specified.If the point size ar-
ray is not enabled, then the current point size defined byPointSize(see section 3.3)
is used.

For the texture coordinate arrays, ifsizeis two then thes andt coordinates are
specified and ther andq coordinates are implicitly set to zero and one, respectively.
If sizeis three thens, t, andr are specified andq is implicitly set to one. Ifsizeis
four then all coordinates are specified. If a texture coordinate array is not enabled,
then the current texture coordinate defined by theMultiTexCoord commands is
used.

The command

void DrawArrays (enum mode, int first, sizei count);

constructs a sequence of geometric primitives by successively transferring ele-
mentsfirst throughfirst + count − 1 of each enabled array to the GL.mode
specifies what kind of primitives are constructed, as definedin section 2.6.1.

The current color, normal, point size, and texture coordinates are each indeter-
minate after the execution ofDrawArrays , if the corresponding array is enabled.
Current values corresponding to disabled arrays are not modified by the execution
of DrawArrays .

Specifying first < 0 results in undefined behavior. Generating the error
INVALID VALUE is recommended in this case.

The command

void DrawElements(enum mode, sizei count, enum type,
void *indices);

Version 1.1.10 (DRAFT - January 16, 2007)

2.9. BUFFER OBJECTS 22

constructs a sequence of geometric primitives by successively transferring the
count elements whose indices are stored inindices to the GL. Theith element
transferred byDrawElementswill be taken from elementindices[i] of each en-
abled array.typemust be one ofUNSIGNED BYTE orUNSIGNED SHORT, indicating
that the values inindicesare indices of GL typeubyte or ushort, respectively.
modespecifies what kind of primitives are constructed; it accepts the same values
as themodeparameter ofDrawArrays .

The current color, normal, point size, and texture coordinates are each indeter-
minate after the execution ofDrawElements, if the corresponding array is enabled.
Current values corresponding to disabled arrays are not modified by the execution
of DrawElements.

If the number of supported texture units (the value ofMAX TEXTURE UNITS) is
k, then the client state required to implement vertex arrays consists of an integer for
the client active texture unit selector,4+k boolean values,4+k memory pointers,
4 + k integer stride values,4 + k symbolic constants representing array types, and
2 + k integers representing values per element. In the initial state, the client active
texture unit selector isTEXTURE0, the boolean values are each false, the memory
pointers are each null, the strides are each zero, and the integers representing values
per element are each four. The array types are eachFLOAT for the Common profile
andFIXED for the Common-Lite profile.

2.9 Buffer Objects

The vertex data arrays described in section 2.8 are stored inclient memory. It is
sometimes desirable to store frequently used client data, such as vertex array data,
in high-performance server memory. GL buffer objects provide a mechanism that
clients can use to allocate, initialize, and render from such memory.

The name space for buffer objects is the unsigned integers, with zero re-
served for the GL. A buffer object is created by binding an unused name to
ARRAY BUFFER. The binding is effected by calling

void BindBuffer (enum target, uint buffer);

with targetset toARRAY BUFFER andbufferset to the unused name. The resulting
buffer object is a new state vector, initialized with a zero-sized memory buffer, and
comprising the state values listed in Table 2.5.

BindBuffer may also be used to bind an existing buffer object. If the bindis
successful no change is made to the state of the newly bound buffer object, and any
previous binding totarget is broken.

Version 1.1.10 (DRAFT - January 16, 2007)

2.9. BUFFER OBJECTS 25

with target set toARRAY BUFFER. offsetandsizeindicate the range of data in the
buffer object that is to be replaced, in terms of basic machine units.dataspecifies a
region of client memorysizebasic machine units in length, containing the data that
replace the specified buffer range. AnINVALID VALUE error is generated ifoffset
or sizeis less than zero, or ifoffset+ sizeis greater than the value ofBUFFER SIZE.

2.9.1 Vertex Arrays in Buffer Objects

Blocks of vertex array data may be stored in buffer objects with the same for-
mat and layout options supported for client-side vertex arrays. However, it is ex-
pected that GL implementations will (at minimum) be optimized for data with all
components represented asfloat (for the Common profile) orfixed (for the
Common-Lite profile), as well as for color data with components represented as
ubyte.

A buffer object binding point is added to the client state associated with
each vertex array type. The commands that specify the locations and or-
ganizations of vertex arrays copy the buffer object name that is bound to
ARRAY BUFFER to the binding point corresponding to the vertex array of the
type being specified. For example, theNormalPointer command copies the
value of ARRAY BUFFER BINDING (the queriable name of the buffer bind-
ing corresponding to the targetARRAY BUFFER) to the client state variable
NORMAL ARRAY BUFFER BINDING.

Rendering commandsDrawArrays andDrawElementsoperate as previously
defined, except that data for enabled vertexarrays are sourced from buffers if the
array’s buffer binding is non-zero. When an array is sourcedfrom a buffer object,
the pointer value of that array is used to compute an offset, in basic machine units,
into the data store of the buffer object. This offset is computed by subtracting a
null pointer from the pointer value, where both pointers aretreated as pointers to
basic machine units.

It is acceptable for vertexarrays to be sourced from any combination of client
memory and various buffer objects during a single renderingoperation.

Attempts to source data from a currently mapped buffer object will generate an
INVALID OPERATION error.

2.9.2 Array Indices in Buffer Objects

Blocks of array indices may be stored in buffer objects with the same format op-
tions that are supported for client-side index arrays. Initially zero is bound to
ELEMENT ARRAY BUFFER, indicating thatDrawElements is to source its indices
from arrays passed as theindicesparameters.

Version 1.1.10 (DRAFT - January 16, 2007)

2.10. COORDINATE TRANSFORMATIONS 31

the coordinates(l b − n)T and(r t − n)T specify the points on the near clipping
plane that are mapped to the lower left and upper right corners of the window,
respectively (assuming that the eye is located at(0 0 0)T). f gives the distance
from the eye to the far clipping plane. If eithern or f is less than or equal to zero,
l is equal tor, b is equal tot, or n is equal tof , the errorINVALID VALUE results.
The corresponding matrix is











2n
r−l

0 r+l
r−l

0

0 2n
t−b

t+b
t−b

0

0 0 − f+n
f−n

− 2fn
f−n

0 0 −1 0











.

void Ortho{xf}(T l, T r, T b, T t, T n, T f);

describes a matrix that produces parallel projection.(l b − n)T and(r t − n)T

specify the points on the near clipping plane that are mappedto the lower left and
upper right corners of the window, respectively.f gives the distance from the eye
to the far clipping plane. Ifl is equal tor, b is equal tot, or n is equal tof , the
errorINVALID VALUE results. The corresponding matrix is











2
r−l

0 0 − r+l
r−l

0 2
t−b

0 − t+b
t−b

0 0 − 2
f−n

− f+n
f−n

0 0 0 1











.

For each texture unit, a4 × 4 matrix is applied to the corresponding texture
coordinates. This matrix is applied as









m1 m5 m9 m13

m2 m6 m10 m14

m3 m7 m11 m15

m4 m8 m12 m16

















s
t
r
q









,

where the left matrix is the current texture matrix. The matrix is applied to the
current texture coordinates, and the resulting transformed coordinates become the
texture coordinates associated with a vertex. Setting the matrix mode toTEXTURE
causes the already described matrix operations to apply to the texture matrix.

There is also a corresponding texture matrix stack for each texture unit. To
change the stack affected by matrix operations, set theactive texture unit selector
by calling

void ActiveTexture(enum texture);

Version 1.1.10 (DRAFT - January 16, 2007)

2.10. COORDINATE TRANSFORMATIONS 32

The selector also affects calls modifying texture environment state, texture coordi-
nate generation state, texture binding state, and queries of all these state values as
well as current texture coordinates.

Specifying an invalidtexturegenerates the errorINVALID ENUM. Valid values
of textureare the same as for theMultiTexCoord commands described in sec-
tion 2.7.

There is a stack of matrices for each of matrix modesMODELVIEW and
PROJECTION, and for each texture unit. ForMODELVIEW mode, the stack depth
is at least 16 (that is, there is a stack of at least 16 model-view matrices). For the
other modes, the depth is at least2. Texture matrix stacks for all texture units have
the same depth. The current matrix in any mode is the matrix onthe top of the
stack for that mode.

void PushMatrix (void);

pushes the stack down by one, duplicating the current matrixin both the top of the
stack and the entry below it.

void PopMatrix (void);

pops the top entry off of the stack, replacing the current matrix with the matrix
that was the second entry in the stack. The pushing or poppingtakes place on the
stack corresponding to the current matrix mode. Popping a matrix off a stack with
only one entry generates the errorSTACK UNDERFLOW; pushing a matrix onto a full
stack generatesSTACK OVERFLOW.

When the current matrix mode isTEXTURE, the texture matrix stack of the
active texture unit is pushed or popped.

The state required to implement transformations consists of an integer for the
active texture unit selector, a four-valued integer indicating the current matrix
mode, one stack of at least two4 × 4 matrices for each ofPROJECTION and each
texture unit,TEXTURE; and a stack of at least 164 × 4 matrices forMODELVIEW.
Each matrix stack has an associated stack pointer. Initially, there is only one matrix
on each stack, and all matrices are set to the identity. The initial active texture unit
selector isTEXTURE0, and the initial matrix mode isMODELVIEW.

2.10.3 Normal Transformation

Finally, we consider how the model-view matrix and transformation state affect
normals. Before use in lighting, normals are transformed toeye coordinates by a
matrix derived from the model-view matrix. Rescaling and normalization opera-
tions are performed on the transformed normals to make them unit length prior to
use in lighting. Rescaling and normalization are controlled by

Version 1.1.10 (DRAFT - January 16, 2007)

2.11. CLIPPING 34

f =
1

√

nx
′2 + ny

′2 + nz
′2

recomputingf for each normal. This makes all non-zero length normals unitlength
regardless of their input length and the nature of the model-view matrix.

After rescaling, the final transformed normal used in lighting,nf , is computed
as

nf = m (nx
′′ ny

′′ nz
′′)

If normalization is disabled, thenm = 1. Otherwise

m =
1

√

nx
′′2 + ny

′′2 + nz
′′2

Because we specify neither the floating-point format nor themeans for matrix
inversion, we cannot specify behavior in the case of a poorly-conditioned (nearly
singular) model-view matrixM . In case of an exactly singular matrix, the trans-
formed normal is undefined. If the GL implementation determines that the model-
view matrix is uninvertible, then the entries in the inverted matrix are arbitrary. In
any case, neither normal transformation nor use of the transformed normal may
lead to GL interruption or termination.

2.11 Clipping

Primitives are clipped to theclip volume. In clip coordinates, theview volumeis
defined by

−wc ≤ xc ≤ wc

−wc ≤ yc ≤ wc

−wc ≤ zc ≤ wc

.

This view volume may be further restricted by as many asn client-defined clip
planes to generate the clip volume. (n is an implementation dependent maximum
that must be at least1.) Each client-defined plane specifies a half-space. The clip
volume is the intersection of all such half-spaces with the view volume (if no
client-defined clip planes are enabled, the clip volume is the view volume).

A client-defined clip plane is specified with

void ClipPlane{xf}(enum p, const T eqn[4]);

Version 1.1.10 (DRAFT - January 16, 2007)

2.12. COLORS AND COLORING 36

maintained, these clipped edges are connected by new edges that lie along the clip
volume’s boundary. Thus, clipping may require the introduction of new vertices
into a triangle, creating a more generalpolygon.

If it happens that a triangle intersects an edge of the clip volume’s boundary,
then the clipped triangle must include a point on this boundary edge.

A line segment or triangle whose vertices havewc values of differing signs may
generate multiple connected components after clipping. GLimplementations are
not required to handle this situation. That is, only the portion of the primitive that
lies in the region ofwc > 0 need be produced by clipping.

Primitives rendered with clip planes must satisfy a complementarity crite-
rion. Suppose a single clip plane with coefficients(p′1 p′2 p′3 p′4) (or a num-
ber of similarly specified clip planes) is enabled and a series of primitives are
drawn. Next, suppose that the original clip plane is respecified with coefficients
(−p′1 −p′2 −p′3 −p′4) (and correspondingly for any other clip planes) and
the primitives are drawn again (and the GL is otherwise in thesame state). In this
case, primitives must not be missing any pixels, nor may any pixels be drawn twice
in regions where those primitives are cut by the clip planes.

The state required for clipping is at least one set of plane equations (each set
consisting of four coefficients) and at least one corresponding bit indicating which
of these client-defined plane equations are enabled. In the initial state, all client-
defined plane equation coefficients are zero and all planes are disabled.

2.12 Colors and Coloring

Figure 2.6 diagrams the processing of colors before rasterization. Incoming colors
arrive in one of several formats. Table 2.7 summarizes the conversions that take
place on R, G, B, and A components depending on which version of the Color
command was invoked to specify the components. As a result oflimited precision,
some converted values will not be represented exactly.

Next, lighting, if enabled, produces a color. If lighting isdisabled, the current
color is used in further processing. After lighting, colorsare clamped to the range
[0, 1]. After clamping, a primitive may beflatshaded, indicating that all vertices
of the primitive are to have the same colors. Finally, if a primitive is clipped, then
colors (and texture coordinates) must be computed at the vertices introduced or
modified by clipping.

Version 1.1.10 (DRAFT - January 16, 2007)

2.12. COLORS AND COLORING 37

[0,2k−1]

float

Convert to
[0.0,1.0]

[−2k,2k−1] Convert to
[−1.0,1.0]

Current
RGBA
Color Lighting

Clamp to
[0.0, 1.0]

Flatshade?

Primitive
Clipping

Color
Clipping

Convert to
fixed−point

Figure 2.6. Processing of colors. See Table 2.7 for the interpretation ofk.

GL Type Conversion

ubyte c/(28 − 1)

byte (2c + 1)/(28 − 1)

ushort c/(216 − 1)

short (2c + 1)/(216 − 1)

fixed c

float c

Table 2.7: Component conversions. Color and normalcomponents (c) are con-
verted to an internal floating-point representation (f), using the equations in this
table. All arithmetic is done in the internal floating-pointformat. These conver-
sions apply to components specified as parameters to GL commands and to com-
ponents in pixel data. The equations remain the same even if the implemented
ranges of the GL data types are greater than the minimum required ranges. (Refer
to table 2.2)

Version 1.1.10 (DRAFT - January 16, 2007)

3.3. POINTS 56

t =
1

2
−

yf + 1
2 − yw

size

wheresize is the point’s size,xf andyf are the (integral) window coordinates
of the fragment, andxw andyw are the exact, unrounded window coordinates of
the vertex for the point.

The widths supported for point sprites must be a superset of those supported
for antialiased points. There is no requirement that these widths must be equally
spaced. If an unsupported width is requested, the nearest supported width is used
instead.

3.3.2 Point Rasterization State

The state required to control point rasterization consistsof one floating-point value
specifying the point width, three floating-pointvalues specifying the minimum and
maximum point size and the point fade threshold size, three floating-pointvalues
specifying the distance attenuation coefficients, a bit indicating whether or not an-
tialiasing is enabled, a a bit indicating whether or not point sprites are enabled, and
a bit for the point sprite texture coordinate replacement mode for each texture unit.

3.3.3 Point Multisample Rasterization

If MULTISAMPLE is enabled, and the value ofSAMPLE BUFFERS is one, then points
are rasterized using the following algorithm, regardless of whether point antialias-
ing (POINT SMOOTH) is enabled or disabled. Point rasterization produces a frag-
ment for each framebuffer pixel with one or more sample points that intersect a
region centered at the point’s(xw, yw). This region is a circle having diameter
equal to the current point width ifPOINT SPRITE OES is disabled, or a square with
side equal to the current point width ifPOINT SPRITE OES is enabled. Coverage
bits that correspond to sample points that intersect the region are 1, other coverage
bits are 0. All data associated with each sample for the fragment are the data as-
sociated with the point being rasterized, with the exception of texture coordinates
whenPOINT SPRITE OES is enabled; these texture coordinates are computed as
described in section 3.3.

Point size range and number of gradations are equivalent to those supported
for antialiased points whenPOINT SPRITE OES is disabled. The set of point
sizes supported is equivalent to those for point sprites without multisample when
POINT SPRITE OES is enabled.

Version 1.1.10 (DRAFT - January 16, 2007)

3.4. LINE SEGMENTS 57

3.4 Line Segments

A line segment results from a line strip, a line loop, or a series of separate line
segments. Line segment rasterization is controlled by several variables. Line width,
which may be set by calling

void LineWidth (float width);
void LineWidthx (fixed width);

with an appropriate positive width, controls the width of rasterized line segments.
The default width is1.0. Values less than or equal to0.0 generate the error
INVALID VALUE. Antialiasing is controlled withEnable and Disable using the
symbolic constantLINE SMOOTH.

3.4.1 Basic Line Segment Rasterization

Line segment rasterization begins by characterizing the segment as eitherx-major
or y-major. x-major line segments have slope in the closed interval[−1, 1]; all
other line segments arey-major (slope is determined by the segment’s endpoints).
We shall specify rasterization only forx-major segments except in cases where the
modifications fory-major segments are not self-evident.

Ideally, the GL uses a “diamond-exit” rule to determine those fragments that
are produced by rasterizing a line segment. For each fragment f with center at win-
dow coordinatesxf andyf , define a diamond-shaped region that is the intersection
of four half planes:

Rf = { (x, y) | |x − xf | + |y − yf | < 1/2.}

Essentially, a line segment starting atpa and ending atpb produces those frag-
mentsf for which the segment intersectsRf , except ifpb is contained inRf . See
figure 3.4.

To avoid difficulties when an endpoint lies on a boundary ofRf we (in princi-
ple) perturb the supplied endpoints by a tiny amount. Letpa andpb have window
coordinates(xa, ya) and(xb, yb), respectively. Obtain the perturbed endpointsp

′

a

given by(xa, ya) − (ǫ, ǫ2) andp
′

b given by(xb, yb) − (ǫ, ǫ2). Rasterizing the line
segment starting atpa and ending atpb produces those fragmentsf for which the
segment starting atp′

a and ending onp′

b intersectsRf , except ifp′

b is contained in
Rf . ǫ is chosen to be so small that rasterizing the line segment produces the same
fragments whenδ is substituted forǫ for any0 < δ ≤ ǫ.

Whenpa andpb lie on fragment centers, this characterization of fragments
reduces to Bresenham’s algorithm with one modification: lines produced in this

Version 1.1.10 (DRAFT - January 16, 2007)

3.5. POLYGONS 62

3.4.4 Line Multisample Rasterization

If MULTISAMPLE is enabled, and the value ofSAMPLE BUFFERS is one, then lines
are rasterized using the following algorithm, regardless of whether line antialiasing
(LINE SMOOTH) is enabled or disabled. Line rasterization produces a fragment for
each framebuffer pixel with one or more sample points that intersect the rectangular
region that is described in theAntialiasing portion of section 3.4.2 (Other Line
Segment Features).

Coverage bits that correspond to sample points that intersect a retained rectan-
gle are 1, other coverage bits are 0. Each color, depth, and set of texture coordinates
is produced by substituting the corresponding sample location into equation 3.3,
then using the result to evaluate equation 3.5. An implementation may choose to
assign the same color value and the same set of texture coordinates to more than
one sample by evaluating equation 3.3 at any location withinthe pixel including
the fragment center or any one of the sample locations, then substituting into equa-
tion 3.4. The color value and the set of texture coordinates need not be evaluated
at the same location.

Line width range and number of gradations are equivalent to those supported
for antialiased lines.

3.5 Polygons

A polygon results from a triangle strip, triangle fan, or series of separate trian-
gles. Like points and line segments, polygon rasterizationis controlled by several
variables.

3.5.1 Basic Polygon Rasterization

The first step of polygon rasterization is to determine if thepolygon isback facing
or front facing. This determination is made by examining the sign of the areacom-
puted by equation 2.6 of section 2.12.1 (including the possible reversal of this sign
as indicated by the last call toFrontFace). If this sign is positive, the polygon is
front facing; otherwise, it is back facing. This determination is used inconjunction
with theCullFaceenable bit and mode value to decide whether or not a particular
polygon is rasterized. TheCullFacemode is set by calling

void CullFace(enum mode);

modeis a symbolic constant: one ofFRONT, BACK or FRONT AND BACK. Culling
is enabled or disabled withEnable or Disable using the symbolic constant

Version 1.1.10 (DRAFT - January 16, 2007)

3.5. POLYGONS 65

factor scales the maximum depth slope of the polygon, andunits scales an im-
plementation dependent constant that relates to the usableresolution of the depth
buffer. The resulting values are summed to produce the polygon offset value. Both
factor andunitsmay be either positive or negative.

The maximum depth slopem of a triangle is

m =

√

(

∂zw

∂xw

)2

+

(

∂zw

∂yw

)2

(3.7)

where(xw, yw, zw) is a point on the triangle.m may be approximated as

m = max

{∣

∣

∣

∣

∂zw

∂xw

∣

∣

∣

∣

,

∣

∣

∣

∣

∂zw

∂yw

∣

∣

∣

∣

}

. (3.8)

The minimum resolvable differencer is an implementation constant. It is the
smallest difference in window coordinatez values that is guaranteed to remain
distinct throughout polygon rasterization and in the depthbuffer. All pairs of frag-
ments generated by the rasterization of two polygons with otherwise identical ver-
tices, butzw values that differ byr, will have distinct depth values.

The offset valueo for a polygon is

o = m ∗ factor + r ∗ units. (3.9)

m is computed as described above, as a function of depth valuesin the range [0,1],
ando is applied to depth values in the same range.

Boolean state valuePOLYGON OFFSET FILL determines whethero is applied
during the rasterization of polygons. This boolean state value is enabled and dis-
abled using the commandsEnableandDisable. If POLYGON OFFSET FILL is en-
abled,o is added to the depth value of each fragment produced by the rasterization
of a polygon.

Fragment depth values are always limited to the range [0,1],either by clamping
after offset addition is performed (preferred), or by clamping the vertex values used
in the rasterization of the polygon.

3.5.4 Polygon Multisample Rasterization

If MULTISAMPLE is enabled and the value ofSAMPLE BUFFERS is one, then poly-
gons are rasterized using the following algorithm. Polygonrasterization produces
a fragment for each framebuffer pixel with one or more samplepoints that satisfy
the point sampling criteria described in section 3.5.1, including the special treat-
ment for sample points that lie on a polygon boundary edge. Ifa polygon is culled,

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 72

3.7 Texturing

Texturing maps a portion of one or more specified images onto each primitive for
which texturing is enabled. This mapping is accomplished byusing the color of
an image at the location indicated by a fragment’s(s, t) coordinates to modify the
fragment’s RGBA color.

An implementation may support texturing using more than oneimage at a time.
In this case the fragment carries multiple sets of texture coordinates(s, t) which
are used to index separate images to produce color values which are collectively
used to modify the fragment’s RGBA color. The following subsections (up to
and including section 3.7.7) specify the GL operation with asingle texture and
section 3.7.13 specifies the details of how multiple textureunits interact.

The GL provides a means to specify the details of how texturing of a primitive
is effected. These details include specification of the image to be texture mapped,
the means by which the image is filtered when applied to the primitive, and the
function that determines what RGBA value is produced given afragment color and
an image value.

3.7.1 Texture Image Specification

The command

void TexImage2D(enum target, int level,
int internalformat, sizei width, sizei height,
int border, enum format, enum type, void *data);

is used to specify atexture image.targetmust beTEXTURE 2D. format, type, and
dataspecify the format of the image data, the type of those data, and a pointer to
the image data in host memory, as described in section 3.6.2.

The groups in memory are treated as being arranged in a rectangle. The rectan-
gle is an image, whose size and organization are specified by thewidthandheight
parameters toTexImage2D.

The selected groups are processed as described in section 3.6.2, stopping after
final expansion to RGBA. Each R, G, B, or A value so generated isclamped to
[0, 1].

Components are then selected from the resulting R, G, B, or A values to obtain
a texture with thebase internal formatspecified byinternalformat, which must
matchformat; no conversions between formats are supported during texture im-
age processing.1 Table 3.8 summarizes the mapping of R, G, B, and A values to

1When a non-RGBAformatandinternalformatare specified, implementations are not required to
actually create and then discard unnecessary R, G, B, or A components. The abstract model defined

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 73

Base Internal Format RGBA Internal Components

ALPHA A A

LUMINANCE R L

LUMINANCE ALPHA R,A L,A
RGB R,G,B R,G,B
RGBA R,G,B,A R,G,B,A

Table 3.8: Conversion from RGBA pixel components to internal texture compo-
nents. See section 3.7.12 for a description of the texture componentsR, G, B, A,
andL.

texture components, as a function of the base internal format of the texture image.
internalformatmay be one of the five internal format symbolic constants listed in
table 3.8. Specifying a value forinternalformatthat is not one of the above values
generates the errorINVALID VALUE. If internalformatdoes not matchformat, the
errorINVALID OPERATION is generated.

The GL stores the resulting texture with internal componentresolutions of its
own choosing. The allocation of internal component resolution may vary based
on anyTexImage2Dparameter (excepttarget), but the allocation must not be a
function of any other state and cannot be changed once established. Allocation
must be invariant; the same allocation must be chosen each time a texture image is
specified with the same parameter values.

The image itself (pointed to bydata) is a sequence of groups of values. The
first group is the lower left corner of the texture image. Subsequent groups fill
out rows of widthwidth from left to right; height rows are stacked from bottom
to top forming the image. When the final R, G, B, and A components have been
computed for a group, they are assigned to components of atexelas described by
table 3.8. Counting from zero, each resultingN th texel is assigned internal integer
coordinates(i, j), where

i = (N mod width)

j = (⌊
N

width
⌋ mod height)

Thus the last row of theimage is indexed with the highest value ofj.
Each color component is converted (by rounding to nearest) to a fixed-point

value withn bits, wheren is the number of bits of storage allocated to that com-
ponent in the image array. We assume that the fixed-point representation used

by section 3.6.2 is used only for consistency and ease of description.

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 74

represents each valuek/(2n − 1), wherek ∈ {0, 1, . . . , 2n − 1}, ask (e.g. 1.0 is
represented in binary as a string of all ones).

Thelevelargument toTexImage2Dis an integerlevel-of-detailnumber. Levels
of detail are discussed below, underMipmapping . The main texture image has a
level of detail number of 0. If a level-of-detail less than zero is specified, the error
INVALID VALUE is generated.

If the border argument to TexImage2D is not zero, then the error
INVALID VALUE is generated.

For non-zerowidth andheight, it must be the case that

ws = 2n (3.12)

hs = 2m (3.13)

for some integersn and m, where ws and hs are the specified imagewidth
and height. If any one of these relationships cannot be satisfied, then the error
INVALID VALUE is generated.

An image with zero width or height indicates the null texture. If the null texture
is specified for level-of-detail zero, it is as if texturing were disabled.

The maximum allowable width and height of a texture image must be at
least 2k for image arrays of level0 through k, wherek is the log base 2 of
MAX TEXTURE SIZE.

An implementation may allow an image array of level 0 to be created only if
that single image array can be supported. Additional constraints on the creation of
image arrays of level 1 or greater are described in more detail in section 3.7.9.

The image indicated to the GL by the image pointer is decoded and copied into
the GL’s internal memory.

We shall refer to the decoded image as thetexture array. A texture array has
width and height

wt = 2n

ht = 2m

wheren andm are defined in equations 3.12 and 3.13.
An element(i, j) of the texture array is called atexel. Thetexture valueused in

texturing a fragment is determined by that fragment’s associated(s, t) coordinates,
but may not correspond to any actual texel. See figure 3.8.

If the data argument ofTexImage2D is a null pointer (a zero-valued pointer
in the C implementation), a texture array is created with thespecifiedtarget, level,
internalformat, width, andheight, but with unspecified image contents. In this

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 75

Figure 3.8. A texture image and the coordinates used to access it. This is a texture
with n = 3 andm = 2. α andβ, values used in blending adjacent texels to obtain a
texture value, are also shown.

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 76

case no pixel values are accessed in client memory, and no pixel processing is
performed. Errors are generated, however, exactly as though thedatapointer were
valid.

3.7.2 Alternate Texture Image Specification Commands

Texture images may also be specified using image data taken directly from the
framebuffer, and rectangular subregions of existing texture images may be respec-
ified.

The command

void CopyTexImage2D(enum target, int level,
enum internalformat, int x, int y, sizei width,
sizei height, int border);

defines a texture array in exactly the manner ofTexImage2D, except that the image
data are taken from the framebuffer rather than from client memory. target must
beTEXTURE 2D, x, y, width, andheightcorrespond precisely to the corresponding
arguments toReadPixels(refer to section 4.3.1); they specify the image’swidth
andheight, and the lower left(x, y) coordinates of the framebuffer region to be
copied. The image is taken from the color buffer of the framebuffer exactly as
if these arguments were passed toReadPixelswith argumentformatset toRGBA,
stopping after conversion of RGBA values. Subsequent processing is identical to
that described forTexImage2D, beginning with clamping of the R, G, B, and A
values from the resulting pixel groups. Parameterslevel, internalformat, andbor-
der are specified using the same values, with the same meanings, as the equivalent
arguments ofTexImage2D. internalformat is further constrained such that color
buffer components can be dropped during the conversion tointernalformat, but
new components cannot be added. For example, an RGB color buffer can be used
to createLUMINANCE or RGB textures, but notALPHA, LUMINANCE ALPHA, or
RGBA textures. Table 3.9 summarizes the allowable framebuffer and base internal
format combinations. If the framebuffer format is not compatible with the base tex-
ture format, anINVALID OPERATION error is generated. The constraints onwidth,
height, andborderare exactly those for the equivalent arguments ofTexImage2D.

Two additional commands,

void TexSubImage2D(enum target, int level, int xoffset,
int yoffset, sizei width, sizei height, enum format,
enum type, void *data);

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 77

Texture Format
Color Buffer A L LA RGB RGBA

A � – – – –
L – � – – –
LA � � � – –
RGB – � – � –
RGBA � � � � �

Table 3.9:CopyTexture internal format/color buffer combinations

void CopyTexSubImage2D(enum target, int level,
int xoffset, int yoffset, int x, int y, sizei width,
sizei height);

respecify only a rectangular subregion of an existing texture array. No change
is made to theinternalformat, width, or height, parameters of the specified tex-
ture array, nor is any change made to texel values outside thespecified subre-
gion. Thetargetarguments ofTexSubImage2DandCopyTexSubImage2Dmust
beTEXTURE 2D. The level parameter of each command specifies the level of the
texture array that is modified. Iflevel is less than zero or greater than the base 2
logarithm of the maximum texture width or height, the errorINVALID VALUE is
generated.

TexSubImage2Dargumentswidth, height, format, type, anddata match the
corresponding arguments toTexImage2D, meaning that they are specified using
the same values, and have the same meanings.

CopyTexSubImage2Dargumentsx, y, width, and height match the corre-
sponding arguments toCopyTexImage2D. Each of theTexSubImagecommands
interprets and processes pixel groups in exactly the mannerof its TexImagecoun-
terpart, except that the assignment of R, G, B, and Apixel group values to the
texture components is controlled by theinternalformat of the texture array, not
by an argument to the command. The same constraints and errors apply to the
TexSubImagecommands’ argumentformatand theinternalformatof the texture
array being respecified as apply to theformatand internalformatarguments of its
TexImagecounterparts.

Argumentsxoffsetandyoffsetof TexSubImage2DandCopyTexSubImage2D
specify the lower left texel coordinates of awidth-wide byheight-high rectangular
subregion of the texture array, address as in figure 3.8. Taking ws andhs to be
the specified width and height of the texture array, and taking x, y, w, andh to
be thexoffset, yoffset, width, andheight argument values, any of the following

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 78

relationships generates the errorINVALID VALUE:

x < 0

x + w > ws

y < 0

y + h > hs

Counting from zero, thenth pixel group is assigned to the texel with internal integer
coordinates[i, j], where

i = x + (n mod w)

j = y + (⌊
n

w
⌋ mod h)

3.7.3 Compressed Texture Images

Texture images may also be specified or modified using image data already stored
in a known compressed image format. The GL defines some specific com-
pressed formats, and others may be defined by GL extensions. There is a mech-
anism to obtain token values for compressed formats; the number of specific
compressed internal formats supported can be obtained by querying the value
of NUM COMPRESSED TEXTURE FORMATS. The set of specific compressed inter-
nal formats supported by the renderer can be obtained by querying the value
of COMPRESSED TEXTURE FORMATS. The only values returned by this query are
those corresponding tointernalformatparameters accepted byCompressedTex-
Image2Dand suitable for general-purpose usage. The renderer will not enumerate
formats with restrictions that need to be specifically understood prior to use.

The command

void CompressedTexImage2D(enum target, int level,
enum internalformat, sizei width, sizei height,
int border, sizei imageSize, void *data);

defines atexture image, with incoming data stored in a specific compressed image
format. Thetarget, level, internalformat, width, height, andborder parameters
have the same meaning as inTexImage2D. datapoints to compressed image data
stored in the compressed image format corresponding tointernalformat.

For all compressed internal formats, the compressed image will be decoded ac-
cording to the definition ofinternalformat. Compressed texture images are treated
as an array ofimageSizeubytes beginning at addressdata. All pixel storage and

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 80

void CompressedTexSubImage2D(enum target, int level,
int xoffset, int yoffset, sizei width, sizei height,
enum format, sizei imageSize, void *data);

respecify only a rectangular region of an existing texture array, with incoming data
stored in a known compressed image format. Thetarget, level, xoffset, yoffset,
width, height, and format parameters have the same meaning as inTexSubIm-
age2D. datapoints to compressed image data stored in the compressed image for-
mat corresponding toformat.

The image pointed to bydata and theimageSizeparameter is interpreted as
though it was provided toCompressedTexImage2D. This command does not pro-
vide for image format conversion, so anINVALID OPERATION error results iffor-
matdoes not match the internal format of the texture image beingmodified. If the
imageSizeparameter is not consistent with the format, dimensions, and contents
of the compressed image (too little or too much data), anINVALID VALUE error
results.

As with CompressedTexImagecalls, compressed internal formats may have
additional restrictions on the use of the compressed image specification calls or
parameters. Any such restrictions will be documented in thespecification defin-
ing the compressed internal format; violating these restrictions will result in an
INVALID OPERATION error.

Any restrictions imposed by specific compressed internal formats will be in-
variant with respect to image contents, meaning that if the GL accepts and stores a
texture image in compressed form,CompressedTexSubImage2Dwill accept any
properly encoded compressed texture image of the same width, height, compressed
image size, and compressed internal format for storage at the same texture level.

Calling CompressedTexSubImage2Dwill result in anINVALID OPERATION

error if xoffsetor yoffsetis not equal to zero (border width), or ifwidth andheight
do not match the values ofTEXTURE WIDTH andTEXTURE HEIGHT respectively.
The contents of any texel outside the region modified by the call are undefined.
These restrictions may be relaxed for specific compressed internal formats whose
images are easily modified.

3.7.4 Compressed Paletted Textures

If internalformat is PALETTE4 RGB8, PALETTE4 RGBA8, PALETTE4 R5 G6 B5,
PALETTE4 RGBA4, PALETTE4 RGB5 A1, PALETTE8 RGB8, PALETTE8 RGBA8,
PALETTE8 R5 G6 B5, PALETTE8 RGBA4, or PALETTE8 RGB5 A1, the com-
pressed texture is a compressed paletted texture.data contains the palette data
followed by the mipmap levels, where the number of mipmap levels stored is given

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 81

by |level| + 1. The number of bits that represent a texel is 4 bits ifinternalformat
is PALETTE4 * and is 8 bits ifinternalformatis PALETTE8 *.

The palette data is formatted as an image containing 16 (forPALETTE4 *) or
256 (forPALETTE8 *) palette entries (pixels). The equivalentformatandtypeof
each palette entry is shown in table 3.11.

Compressed Texture FormatPalette entry Palette entry
format type

PALETTE4 RGB8 OES RGB UNSIGNED BYTE

PALETTE4 RGBA8 OES RGBA UNSIGNED BYTE

PALETTE4 R5 G6 B5 OES RGB UNSIGNED SHORT 5 6 5

PALETTE4 RGBA4 OES RGBA UNSIGNED SHORT 4 4 4 4

PALETTE4 RGB5 A1 OES RGBA UNSIGNED SHORT 5 5 5 1

PALETTE8 RGB8 OES RGB UNSIGNED BYTE

PALETTE8 RGBA8 OES RGBA UNSIGNED BYTE

PALETTE8 R5 G6 B5 OES RGB UNSIGNED SHORT 5 6 5

PALETTE8 RGBA4 OES RGBA UNSIGNED SHORT 4 4 4 4

PALETTE8 RGB5 A1 OES RGBA UNSIGNED SHORT 5 5 5 1

Table 3.11: Palette entry pixel formats.

Image data immediately follows the palette image. Each mipmap level im-
age present in the image data immediately follows the previous level, starting
with mipmap level zero and proceeding through the number of levels defined by
|level| + 1. Texels within each mipmap level image are formatted as shown in
table 3.12 and are packed contiguously starting at the lowerleft.

PALETTE4 *:

7 6 5 4 3 2 1 0

1st texel 2nd texel

PALETTE8 *:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st texel 2nd 3rd 4th

Table 3.12: Texel data formats for compressed paletted textures.

If a compressed paletted texture is specified with a positivelevel argument to

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 82

Name Type Legal Values

TEXTURE WRAP S integer CLAMP TO EDGE, REPEAT
TEXTURE WRAP T integer CLAMP TO EDGE, REPEAT
TEXTURE MIN FILTER integer NEAREST,

LINEAR,
NEAREST MIPMAP NEAREST,
NEAREST MIPMAP LINEAR,
LINEAR MIPMAP NEAREST,
LINEAR MIPMAP LINEAR,

TEXTURE MAG FILTER integer NEAREST,
LINEAR

GENERATE MIPMAP boolean TRUE or FALSE

Table 3.13: Texture parameters and their values.

TexImage2D, anINVALID VALUE error is generated.
Subimages may not be specified for compressed paletted textures. Calling

CompressedTexSubImage2Dwith any of thePALETTE* arguments in table 3.11
will generate anINVALID OPERATION error.

3.7.5 Texture Parameters

Various parameters control how the texture array is treatedwhen specified or
changed, and when applied to a fragment. Each parameter is set by calling

void TexParameter{ixf}(enum target, enum pname,
T param);

void TexParameter{ixf}v(enum target, enum pname,
T params);

targetis the target, which must beTEXTURE 2D. pnameis a symbolic constant indi-
cating the parameter to be set; the possible constants and corresponding parameters
are summarized in table 3.13. In the first form of the command,param is a value
to which to set a single-valued parameter; in the second formof the command,
paramsis an array of parameters whose type depends on the parameterbeing set.

If the value of texture parameterGENERATE MIPMAP is TRUE, specifying or
changing texture arrays may have side effects, which are discussed in theAuto-
matic Mipmap Generation discussion of section 3.7.7.

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 84

Scale Factor and Level of Detail

The choice is governed by a scale factorρ(x, y) and thelevel of detailparameter
λ(x, y), defined as

λ(x, y) = log2[ρ(x, y)]

If λ(x, y) is less than or equal to the constantc (described below in sec-
tion 3.7.8) the texture is said to be magnified; if it is greater, the texture is minified.

Let s(x, y) be the function that associates ans texture coordinate with each set
of window coordinates(x, y) that lie within a primitive; definet(x, y) analogously.
Let u(x, y) = 2ns(x, y) andv(x, y) = 2mt(x, y), wheren andm are as defined by
equations 3.12 and 3.13 withws andhs equal to the width and height of the image
array whose level is zero. For a polygon,ρ is given at a fragment with window
coordinates(x, y) by

ρ = max







√

(

∂u

∂x

)2

+

(

∂v

∂x

)2

,

√

(

∂u

∂y

)2

+

(

∂v

∂y

)2






(3.14)

where∂u/∂x indicates the derivative ofu with respect to windowx, and similarly
for the other derivatives.

For a line, the formula is

ρ =

√

(

∂u

∂x
∆x +

∂u

∂y
∆y

)2

+

(

∂v

∂x
∆x +

∂v

∂y
∆y

)2/

l, (3.15)

where∆x = x2 − x1 and∆y = y2 − y1 with (x1, y1) and (x2, y2) being the
segment’s window coordinate endpoints andl =

√

∆x2 + ∆y2. For a point or
point sprite, ρ ≡ 1.

While it is generally agreed that equations 3.14 and 3.15 give the best results
when texturing, they are often impractical to implement. Therefore, an imple-
mentation may approximate the idealρ with a functionf(x, y) subject to these
conditions:

1. f(x, y) is continuous and monotonically increasing in each of|∂u/∂x|,
|∂u/∂y|, |∂v/∂x|, |∂v/∂y|,

2. Let

mu = max

{∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

,

∣

∣

∣

∣

∂u

∂y

∣

∣

∣

∣

}

mv = max

{∣

∣

∣

∣

∂v

∂x

∣

∣

∣

∣

,

∣

∣

∣

∣

∂v

∂y

∣

∣

∣

∣

}

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 85

Thenmax{mu,mv} ≤ f(x, y) ≤ mu + mv.

Whenλ indicates minification, the value assigned toTEXTURE MIN FILTER

is used to determine how the texture value for a fragment is selected. When
TEXTURE MIN FILTER is NEAREST, the texel in the image array of level zero that
is nearest (in Manhattan distance) to that specified by(s, t) is obtained. This means
the texel at location(i, j) becomes the texture value, withi given by

i =

{

⌊u⌋, s < 1
2n − 1, s = 1

(3.16)

(Recall that ifTEXTURE WRAP S is REPEAT, then0 ≤ s < 1.) Similarly, j is found
as

j =

{

⌊v⌋, t < 1
2m − 1, t = 1

(3.17)

WhenTEXTURE MIN FILTER is LINEAR, a2× 2 squareof texels in the image
array of level zero is selected. This squareis obtained by first wrapping texture
coordinates as described in section 3.7.6, then computing

i0 =

{

⌊u − 1/2⌋ mod 2n, TEXTURE WRAP S is REPEAT
⌊u − 1/2⌋, otherwise

and

j0 =

{

⌊v − 1/2⌋ mod 2m, TEXTURE WRAP T is REPEAT
⌊v − 1/2⌋, otherwise

Then

i1 =

{

(i0 + 1) mod 2n, TEXTURE WRAP S is REPEAT
i0 + 1, otherwise

and

j1 =

{

(j0 + 1) mod 2m, TEXTURE WRAP T is REPEAT
j0 + 1, otherwise

Let
α = frac(u − 1/2)

β = frac(v − 1/2)

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 86

wherefrac(x) denotes the fractional part ofx.

The texture valueτ is found as

τ = (1 − α)(1 − β)τi0j0 + α(1 − β)τi1j0 + (1 − α)βτi0j1 + αβτi1j1 (3.18)

whereτij is the texel at location(i, j) in the texture image.
Due to the removal of texture borders and restrictions on wrap modes in the

GL, the selectedτij in the above equation will never refer to a border texel with
i < 0, j < 0, i ≥ ws, or j ≥ hs. 2

Mipmapping

TEXTURE MIN FILTER values NEAREST MIPMAP NEAREST,
NEAREST MIPMAP LINEAR, LINEAR MIPMAP NEAREST, and
LINEAR MIPMAP LINEAR each require the use of amipmap. A mipmap is
an ordered set of arrays representing the same image; each array has a resolution
lower than the previous one. If the image array of level zero has dimensions
2n × 2m, then there aremax{n,m} + 1 image arrays in the mipmap. Each array
subsequent to the array of level zero has dimensions

σ(i − 1) × σ(j − 1)

where the dimensions of the previous array are

σ(i) × σ(j)

and

σ(x) =

{

2x x > 0
1 x ≤ 0

until the last array is reached with dimension1 × 1 × 1.
Each array in a mipmap is defined usingTexImage2Dor CopyTexImage2D;

the array being set is indicated with the level-of-detail argument level. Level-
of-detail numbers proceed from zero for the original texture array throughq =
max{n,m} with each unit increase indicating an array of half the dimensions of
the previous one as already described. All arrays from zero throughq must be
defined, as discussed in section 3.7.9.

2Is this really true with regard toREPEAT wrap mode?

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 87

The mipmap is used in conjunction with the level of detail to approximate the
application of an appropriately filtered texture to a fragment. Let c be the value
of λ at which the transition from minification to magnification occurs (since this
discussion pertains to minification, we are concerned only with values ofλ where
λ > c).

For mipmap filters NEAREST MIPMAP NEAREST and
LINEAR MIPMAP NEAREST, thedth mipmap array is selected, where

d =











0, λ ≤ 1
2

⌈λ + 1
2⌉ − 1, λ > 1

2 , λ ≤ q + 1
2

q, λ > q + 1
2

(3.19)

The rules forNEAREST or LINEAR filtering are then applied to the selected
array.

For mipmap filtersNEAREST MIPMAP LINEAR andLINEAR MIPMAP LINEAR,
the leveld1 andd2 mipmap arrays are selected, where

d1 =

{

q, λ ≥ q
⌊λ⌋, otherwise

(3.20)

d2 =

{

q, λ ≥ q
d1 + 1, otherwise

(3.21)

The rules forNEAREST or LINEAR filtering are then applied to each of the
selected arrays, yielding two corresponding texture values τ1 and τ2. The final
texture value is then found as

τ = [1 − frac(λ)]τ1 + frac(λ)τ2.

Automatic Mipmap Generation

If the value of texture parameterGENERATE MIPMAP is TRUE, making any change
to the texels of the zero level array of a mipmap will also compute a complete set
of mipmap arrays (as defined in section 3.7.9) derived from the modified zero level
array. Array levels1 throughq arereplaced with the derived arrays, regardless of
their previous contents. The zero level array is left unchanged by this computation.

The internal formats of the derived mipmap arrays all match those of the zero
level array, and the dimensions of the derived arrays followthe requirements de-
scribed in section 3.7.9.

The contents of the derived arrays are computed by repeated,filtered reduction
of the zero level array. No particular filter algorithm is required, though a2×2 box

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 89

Effects of Completeness on Texture Image Specification

An implementation may allow a texture image array of level 1 or greater to be
created only if a complete set of image arrays consistent with the requested array
can be supported.

3.7.10 Texture State

The state necessary for texture can be divided into two categories. First, there is
the set of mipmap arrays and their number. Each array has associated with it a
width and height, an integer describing the internal formatof the image, six integer
values describing the resolutions of each of the red, green,blue, alpha, luminance,
and intensity components of the image, a boolean describingwhether the image is
compressed or not, and an integer size of a compressed image.Each initial texture
array is null (zero width and height, internal format1, with the compressed flag
set toFALSE, a zero compressed size, and zero-sized components). Next,there
are the two sets of texture properties; each consists of the selected minification
and magnification filters, the wrap modes fors and t, and a boolean indicating
whether automatic mipmap generation should be performed. In the initial state,
the value assigned toTEXTURE MIN FILTER is NEAREST MIPMAP LINEAR, and
the value forTEXTURE MAG FILTER is LINEAR. s andt wrap modes are both set
to REPEAT. The value ofGENERATE MIPMAP is false.

3.7.11 Texture Objects

In addition to the default textureTEXTURE 2D, named texture objects can be cre-
ated and operated upon. The name space for texture objects isthe unsigned inte-
gers, with zero reserved by the GL.

A texture object is created bybinding an unused name toTEXTURE 2D. The
binding is effected by calling

void BindTexture(enum target, uint texture);

with target set toTEXTURE 2D and textureset to the unused name. The result-
ing texture object is a new state vector, comprising all the state values listed in
section 3.7.10, set to the same initial values.

BindTexture may also be used to bind an existing texture object to
TEXTURE 2D. If the bind is successful no change is made to the state of thebound
texture object, and any previous binding totarget is broken.

While a texture object is bound, GL operations on the target to which it is
bound affect the bound object, and queries of the target to which it is bound return

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 90

state from the bound object. If texture mapping is enabled, the state of the bound
texture object directs the texturing operation.

TEXTURE 2D has a texture state vector associated with it. In order that access
to this initial texture not be lost, it is treated as a textureobject whose names is 0.
The initial texture is therefore operated upon, queried, and applied asTEXTURE 2D

while 0 is bound to the corresponding targets.
Texture objects are deleted by calling

void DeleteTextures(sizei n, uint *textures);

texturescontainsn names of texture objects to be deleted. After a texture object
is deleted, it has no contents, and its name is again unused. If a texture that is
currently bound to the targetTEXTURE 2D is deleted, it is as thoughBindTexture
had been executed with the sametargetandtexturezero. Unused names intextures
are silently ignored, as is the value zero.

The command

void GenTextures(sizei n, uint *textures);

returnsn previously unused texture object names intextures. These names are
marked as used, for the purposes ofGenTexturesonly, but they acquire texture
state only when they are first bound, just as if they were unused.

The texture object name space, including the initialtexture object, is shared
among all texture units. A texture object may be bound to morethan one texture
unit simultaneously. After a texture object is bound, any GLoperations on that tar-
get object affect any other texture units to which the same texture object is bound.

Texture binding is affected by the setting of the stateACTIVE TEXTURE.
If a texture object is deleted, it is as if all texture units which are bound to that

texture object are rebound to texture object zero.

3.7.12 Texture Environments and Texture Functions

The command

void TexEnv{ixf}(enum target, enum pname, T param);
void TexEnv{ixf}v(enum target, enum pname, T params);

sets parameters of thetexture environmentthat specifies how texture values are
interpreted when texturing a fragment.

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 92

Texture Base Texture source color
Internal Format Cs As

ALPHA (0, 0, 0) At

LUMINANCE (Lt, Lt, Lt) 1
LUMINANCE ALPHA (Lt, Lt, Lt) At

RGB (Rt, Gt, Bt) 1
RGBA (Rt, Gt, Bt) At

Table 3.14: Correspondence of filtered texture components to texture source com-
ponents.

Texture Base REPLACE MODULATE DECAL

Internal Format Function Function Function

ALPHA Cv = Cp Cv = Cp undefined
Av = As Av = ApAs

LUMINANCE Cv = Cs Cv = CpCs undefined
(or 1) Av = Ap Av = Ap

LUMINANCE ALPHA Cv = Cs Cv = CpCs undefined
(or 2) Av = As Av = ApAs

RGB Cv = Cs Cv = CpCs Cv = Cs

(or 3) Av = Ap Av = Ap Av = Ap

RGBA Cv = Cs Cv = CpCs Cv = Cp(1 − As) + CsAs

(or 4) Av = As Av = ApAs Av = Ap

Table 3.15: Texture functionsREPLACE, MODULATE, andDECAL.

Version 1.1.10 (DRAFT - January 16, 2007)

3.7. TEXTURING 93

Texture Base BLEND ADD

Internal Format Function Function

ALPHA Cv = Cp Cv = Cp

Av = ApAs Av = ApAs

LUMINANCE Cv = Cp(1 − Cs) + CcCs Cv = Cp + Cs

(or 1) Av = Ap Av = Ap

LUMINANCE ALPHA Cv = Cp(1 − Cs) + CcCs Cv = Cp + Cs

(or 2) Av = ApAs Av = ApAs

RGB Cv = Cp(1 − Cs) + CcCs Cv = Cp + Cs

(or 3) Av = Ap Av = Ap

RGBA Cv = Cp(1 − Cs) + CcCs Cv = Cp + Cs

(or 4) Av = ApAs Av = ApAs

Table 3.16: Texture functionsBLEND andADD.

ALPHA combiner function, six four-valued integers indicating the combinerRGB
andALPHA source arguments, three four-valued integers indicating the combiner
RGB operands, three two-valued integers indicating the combinerALPHA operands,
and four floating-point environment color values. In the initial state, the texture
and combiner functions are eachMODULATE, the combinerRGB andALPHA sources
are eachTEXTURE, PREVIOUS, andCONSTANT for sources 0, 1, and 2 respectively,
the combinerRGB operands for sources 0 and 1 are eachSRC COLOR, the combiner
RGB operand for source 2, as well as for the combinerALPHA operands, are each
SRC ALPHA, and the environment color is(0, 0, 0, 0).

3.7.13 Texture Application

Texturing is enabled or disabled using the genericEnableandDisablecommands,
with the symbolic constantTEXTURE 2D to enable or disable texturing, respec-
tively. If texturing is disabled, a rasterized fragment is passed on unaltered to the
next stage of the GL (although its texture coordinates may bediscarded). Other-
wise, a texture value is found according to the parameter values of the currently
bound texture imageusing the rules given in sections 3.7.6 through 3.7.8. This
texture value is used along with the incoming fragment in computing the texture
function indicated by the currently bound texture environment. The result of this
function replaces the incoming fragment’s primary R, G, B, and A values. These
are the color values passed to subsequent operations. Otherdata associated with
the incoming fragment remain unchanged, except that the texture coordinates may
be discarded.

Version 1.1.10 (DRAFT - January 16, 2007)

3.8. FOG 96

Each texture unit is paired with an environment function, asshown in figure 3.9.
The second texture function is computed using the texture value from the second
texture, the fragment resulting from the first texture function computation and the
second texture unit’s environment function. If there is a third texture, the fragment
resulting from the second texture function is combined withthe third texture value
using the third texture unit’s environment function and so on. The texture unit se-
lected byActiveTexture determines which texture unit’s environment is modified
by TexEnv calls.

If the value ofTEXTURE ENV MODE isCOMBINE, the texture function associated
with a given texture unit is computed using the values specified by SRCn RGB,
SRCn ALPHA, OPERANDn RGB andOPERANDn ALPHA.

Texturing is enabled and disabled individually for each texture unit. If texturing
is disabled for one of the units, then the fragment resultingfrom the previous unit
is passed unaltered to the following unit.

The required state, per texture unit, is one bitindicating whether texturing is
enabled or disabled. In the initial state, texturing is disabled for all texture units.

3.8 Fog

If enabled, fog blends a fog color with a rasterized fragment’s post-texturing color
using a blending factorf . Fog is enabled and disabled with theEnableandDisable
commands using the symbolic constantFOG.

This factorf is computed according to one of three equations:

f = exp(−d · c), (3.22)

f = exp(−(d · c)2), or (3.23)

f =
e − c

e − s
(3.24)

c is the eye-coordinate distance from the eye,(0, 0, 0, 1) in eye coordinates, to the
fragment center. The equation, along with eitherd or e ands, is specified with

void Fog{xf}(enum pname, T param);
void Fog{xf}v(enum pname, T params);

If pnameis FOG MODE, then param must be, orparamsmust point to an inte-
ger that is one of the symbolic constantsEXP, EXP2, or LINEAR, in which case
equation 3.22, 3.23, or 3.24, respectively, is selected forthe fog calculation (if,

Version 1.1.10 (DRAFT - January 16, 2007)

4.1. PER-FRAGMENT OPERATIONS 100

Figure 4.1. Per-fragment operations.

and conditions. We describe these modifications and tests, diagrammed in Fig-
ure 4.1, in the order in which they are performed.

4.1.1 Pixel Ownership Test

The first test is to determine if the pixel at location(xw, yw) in the framebuffer
is currently owned by the GL (more precisely, by this GL context). If it is not,
the window system decides the fate of the incoming fragment. Possible results are
that the fragment is discarded or that some subset of the subsequent per-fragment
operations are applied to the fragment. This test allows thewindow system to
control the GL’s behavior, for instance, when a GL window is obscured.

4.1.2 Scissor Test

The scissor test determines if(xw, yw) lies within the scissor rectangle defined by
four values. These values are set with

void Scissor(int left, int bottom, sizei width,
sizei height);

Version 1.1.10 (DRAFT - January 16, 2007)

4.1. PER-FRAGMENT OPERATIONS 106

Function Blend Factors
(Sr, Sg, Sb, Sa) or (Dr,Dg,Db,Da)

ZERO (0, 0, 0, 0)

ONE (1, 1, 1, 0)

SRC COLOR (Rs, Gs, Bs, As)

ONE MINUS SRC COLOR (1, 1, 1, 1) − (Rs, Gs, Bs, As)

DST COLOR (Rd, Gd, Bd, Ad)

ONE MINUS DST COLOR (1, 1, 1, 1) − (Rd, Gd, Bd, Ad)

SRC ALPHA (As, As, As, As)

ONE MINUS SRC ALPHA (1, 1, 1, 1) − (As, As, As, As)

DST ALPHA (Ad, Ad, Ad, Ad)

ONE MINUS DST ALPHA (1, 1, 1, 1) − (Ad, Ad, Ad, Ad)

SRC ALPHA SATURATE (f, f, f, 1)1

Table 4.1:RGB andALPHA source and destination blending functions and the cor-
responding blend factors. Addition and subtraction is performed component-wise.
1 f = min(As, 1 − Ad).

Blending State

The state required for blending is two integers indicating the source and destination
blending and a bit indicating whether blending is enabled ordisabled. The initial
blending functions areONE for the source functions andZERO for the destination
functions. Initially, blending is disabled.

Blending uses the color buffer selected for writing (see section 4.2.1) using that
buffer’s color forCd. If a color buffer has no A value, thenAd is taken to be1.

4.1.8 Dithering

Dithering selects between two color values. Consider the value of any of the color
components as a fixed-point value withm bits to the left of the binary point, where
m is the number of bits allocated to that component in the framebuffer; call each
such valuec. For eachc, dithering selects a valuec1 such thatc1 ∈ {max{0, ⌈c⌉−
1}, ⌈c⌉} (after this selection, treatc1 as a fixed point value in [0,1] withm bits).
This selection may depend on thexw andyw coordinates of the pixel.c must not
be larger than the maximum value representable in the framebuffer for either the
component or the index, as appropriate.

Many dithering algorithms are possible, but a dithered value produced by any
algorithm must depend only the incoming value and the fragment’s x andy window

Version 1.1.10 (DRAFT - January 16, 2007)

4.1. PER-FRAGMENT OPERATIONS 107

coordinates. If dithering is disabled, then each color component is truncated to a
fixed-point value with as many bits as there are in the corresponding component in
the framebuffer.

Dithering is enabled withEnableand disabled withDisableusing the symbolic
constantDITHER. The state required is thus a single bit. Initially, dithering is
enabled.

4.1.9 Logical Operation

Finally, a logical operation is applied between the incoming fragment’s color and
the color stored at the corresponding location in the framebuffer. The result re-
places the values in the framebuffer at the fragment’s(xw, yw) coordinates. Logical
operation on color values is enabled or disabled withEnable or Disableusing the
symbolic constantCOLOR LOGIC OP. If the logical operation is enabled for color
values, it is as if blending were disabled, regardless of thevalue ofBLEND.

The logical operation is selected by

void LogicOp(enum op);

op is a symbolic constant; the possible constants and corresponding operations are
enumerated in Table 4.2. In this table,s is the value of the incoming fragment and
d is the value stored in the framebuffer.

Logical operations are performed independently for each red, green, blue, and
alpha value of each color buffer that is selected for writing. The required state is an
integer indicating the logical operation, and two bits indicating whether the logical
operation is enabled or disabled. The initial state is for the logic operation to be
given byCOPY, and to be disabled.

4.1.10 Additional Multisample Fragment Operations

If MULTISAMPLE is enabled, and the value ofSAMPLE BUFFERS is one, the alpha
test, stencil test, depth test, blending, and dithering operations are performed for
each pixel sample, rather than just once for each fragment. Failure of the alpha,
stencil, or depth test results in termination of the processing of that sample, rather
than discarding of the fragment. All operations are performed on the color, depth,
and stencil values stored in the multisample buffer (to be described in a following
section). The contents of the color buffer are not modified atthis point.

Stencil, depth, blending, and dithering operations are performed for a pixel
sample only if that sample’s fragment coverage bit is a valueof 1. If the corre-
sponding coverage bit is 0, no operations are performed for that sample.

Version 1.1.10 (DRAFT - January 16, 2007)

4.2. WHOLE FRAMEBUFFER OPERATIONS 109

4.2 Whole Framebuffer Operations

The preceding sections described the operations that occuras individual fragments
are sent to the framebuffer. This section describes operations that control or affect
the whole framebuffer.

4.2.1 Selecting a Buffer for Writing

Color values are written into the front buffer for single buffered contexts, or into
the back buffer for back buffered contexts. The type of context is determined when
creating a GL context.

4.2.2 Fine Control of Buffer Updates

Four commands are used to mask the writing of bits to each of the logical frame-
buffers after all per-fragment operations have been performed. The command

void ColorMask(boolean r, boolean g, boolean b,
boolean a);

controls the writing of R, G, B and A values to the color buffer. r, g, b, anda
indicate whether R, G, B, or A values, respectively, are written or not (a value of
TRUE means that the corresponding value is written). In the initial state, all color
values are enabled for writing.

The depth buffer can be enabled or disabled for writingzw values using

void DepthMask(booleanmask);

If maskis non-zero, the depth buffer is enabled for writing; otherwise, it is disabled.
In the initial state, the depth buffer is enabled for writing.

The command

void StencilMask(uint mask);

controls the writing of particular bits into the stencil planes. The least significants
bits ofmaskcomprise an integer mask (s is the number of bits in the stencil buffer).
The initial state is for the stencil plane mask to be all ones.

The state required for the masking operations is an integer for stencil values
and a bit for depth values. A set of four bits is also required indicating which color
components of an RGBA value should be written. In the initialstate, the stencil
mask is all ones, as are the bits controlling depth value and RGBA component
writing.

Version 1.1.10 (DRAFT - January 16, 2007)

4.2. WHOLE FRAMEBUFFER OPERATIONS 110

Fine Control of Multisample Buffer Updates

When the value ofSAMPLE BUFFERS is one,ColorMask, DepthMask, andSten-
cilMask control the modification of values in the multisample buffer. The color
mask has no effect on modifications to the color buffer. If thecolor mask is entirely
disabled, the color sample values must still be combined (asdescribed above) and
the result used to replace values of the color buffer.

4.2.3 Clearing the Buffers

The GL provides a means for setting portions of every pixel ina particular buffer
to the same value. The argument to

void Clear(bitfield buf);

is the bitwise OR of a number of values indicating which buffers are to
be cleared. The values areCOLOR BUFFER BIT, DEPTH BUFFER BIT, and
STENCIL BUFFER BIT, indicating the color buffer, the depth buffer, and the sten-
cil buffer, respectively. The value to which each buffer is cleared depends on the
setting of the clear value for that buffer. If the mask is not abitwise OR of the
specified values, then the errorINVALID VALUE is generated.

void ClearColor(clampf r, clampf g, clampf b,
clampf a);

void ClearColorx(clampx r, clampx g, clampx b,
clampx a);

sets the clear value for the color buffer. Each of the specified components is
clamped to[0, 1] and converted to fixed-point according to the rules of sec-
tion 2.12.8.

void ClearDepthf(clampf d);
void ClearDepthx(clampx d);

takes a value that is clamped to the range[0, 1] and converted to fixed-point accord-
ing to the rules for a windowz value given in section 2.10.1. Similarly,

void ClearStencil(int s);

takes a single integer argument that is the value to which to clear the stencil buffer.
s is masked to the number of bitplanes in the stencil buffer.

Version 1.1.10 (DRAFT - January 16, 2007)

4.3. READING PIXELS 111

When Clear is called, the only per-fragment operations that are applied (if
enabled) are the pixel ownership test, the scissor test, anddithering. The masking
operations described in the last section (4.2.2) are also effective. If a buffer is not
present, then aClear directed at that buffer has no effect.

The state required for clearing is a clear value for each of the color buffer,
the depth buffer, and the stencil buffer. Initially, the RGBA color clear value is
(0,0,0,0), the stencil buffer clear value is 0, and the depthbuffer clear value is 1.0.

Clearing the Multisample Buffer

The color samples of the multisample buffer are cleared whenthe color buffer is
cleared, as specified by theClear mask bitCOLOR BUFFER BIT.

If the Clear mask bitsDEPTH BUFFER BIT or STENCIL BUFFER BIT are set,
then the corresponding depth or stencil samples, respectively, are cleared.

4.3 Reading Pixels

Pixels may be read from the framebuffer to client memory using theReadPixels
commands, as described below. Pixels may also be copied fromclient memory or
the framebuffer to texture images in the GL using theTexImage2DandCopyTex-
Image2Dcommands, as described in section 3.7.1.

4.3.1 Reading Pixels

The method for reading pixels from the framebuffer and placing them in client
memory is diagrammed in Figure 4.2. We describe the stages ofthe pixel reading
process in the order in which they occur.

Pixels are read using

void ReadPixels(int x, int y, sizei width, sizei height,
enum format, enum type, void *data);

The arguments afterx and y to ReadPixelsare those described in section 3.6.2
defining pixel rectangles. Only two combinations offormat and type are ac-
cepted. The first isformat RGBA and type UNSIGNED BYTE. The second is an
implementation-chosen format from among those defined in table 3.4. The val-
ues of format and type for this format may be determined by callingGetInte-
gerv with the symbolic constantsIMPLEMENTATION COLOR READ FORMAT OES

andIMPLEMENTATION COLOR READ TYPE OES, respectively. The pixel storage
modes that apply toReadPixelsand other commands that query images (see sec-
tion 6.1) are summarized in Table 4.3.

Version 1.1.10 (DRAFT - January 16, 2007)

4.3. READING PIXELS 112

Figure 4.2. Operation ofReadPixels. Operations in dashed boxes may be enabled
or disabled.

Parameter Name Type Initial Value Valid Range

PACK ALIGNMENT integer 4 1,2,4,8

Table 4.3:PixelStoreparameters pertaining toReadPixels.

Version 1.1.10 (DRAFT - January 16, 2007)

6.1. QUERYING GL STATE 119

6.1.3 Enumerated Queries

Other commands exist to obtain state variables that are identified by a category
(clip plane, light, material, etc.) as well as a symbolic constant. These are

void GetClipPlane{xf}(enum plane, T eqn[4]);
void GetLight{xf}v(enum light, enum value, T data);
void GetMaterial{xf}v(enum face, enum value, T data);
void GetTexEnv{ixf}v(enum env, enum value, T data);
void GetTexParameter{ixf}v(enum target, enum value,

T data);
void GetBufferParameteriv(enum target, enum value,

T data);

GetClipPlane always returns four values ineqn; these are the coefficients of the
plane equation ofplane in eye coordinates (these coordinates are those that were
computed when the plane was specified).

GetLight places information aboutvalue(a symbolic constant) forlight (also a
symbolic constant) indata. POSITION or SPOT DIRECTION returns values in eye
coordinates (again, these are the coordinates that were computed when the position
or direction was specified).

GetMaterial , GetTexEnv, GetTexParameter, andGetBufferParameter are
similar to GetLight , placing information aboutvalue for the target indicated by
their first argument intodata. The faceargument toGetMaterial must be either
FRONT or BACK, indicating the front or back material, respectively. Theenvargu-
ment toGetTexEnvmust beTEXTURE ENV.

GetTexParameterparametertargetmust beTEXTURE 2D, indicating the cur-
rently bound texture object.value is a symbolic value indicating which texture
parameter is to be obtained. ForGetTexParameter, value must be one of the
symbolic values in table 3.13.

6.1.4 Texture Queries

The command

boolean IsTexture(uint texture);

returnsTRUE if textureis the name of a texture object. Iftextureis zero, or is a non-
zero value that is not the name of a texture object, or if an error condition occurs,
IsTexture returnsFALSE. A name returned byGenTextures, but not yet bound, is
not the name of a texture object.

Version 1.1.10 (DRAFT - January 16, 2007)

6.1. QUERYING GL STATE 120

6.1.5 Pointer and String Queries

The command

void GetPointerv(enum pname, void **params);

obtains the pointer or pointers namedpnamein the arrayparams. The possible
values for pname are VERTEX ARRAY POINTER, NORMAL ARRAY POINTER,
COLOR ARRAY POINTER, TEXTURE COORD ARRAY POINTER, and
POINT SIZE ARRAY POINTER OES. Each returns a single pointer value.

Finally,

ubyte *GetString (enum name);

returns a pointer to a static string describing some aspect of the current GL con-
nection. The possible values fornameare VENDOR, RENDERER, VERSION, and
EXTENSIONS. The format of theRENDERER andVENDOR strings is implementation
dependent. TheEXTENSIONS string contains a space separated list of extension
names (the extension names themselves do not contain any spaces); theVERSION
string has the format

"OpenGL ES-XX N.M"
whereXX is a two-character profile identifier, eitherCM for the Common profile

orCL for the Common-List profile, andN.M are the major and minor version num-
bers of the OpenGL ES implementation, separated by a period (currently1.1).

GetString returns the version number (returned in theVERSION string) and
the extension names (returned in theEXTENSIONS string) that can be supported
on the connection. Thus, if the client and server support different versions and/or
extensions, a compatible version and list of extensions is returned.

6.1.6 Buffer Object Queries

The command

boolean IsBuffer (uint buffer);

returnsTRUE if buffer is the name of an buffer object. Ifbuffer is zero, or ifbuffer
is a non-zero value that is not the name of an buffer object,IsBuffer returnFALSE.

Version 1.1.10 (DRAFT - January 16, 2007)

6.2. STATE TABLES 122

Type code Explanation

B Boolean
BMU Basic machine units

C Color (floating-point R, G, B, and A values)
T Texture coordinates (floating-points, t, r, q val-

ues)
N Normal coordinates (floating-pointx, y, z values)
V Vertex, including associated data
Z Integer
Z+ Non-negative integer

Zk, Zk∗ k-valued integer (k∗ indicatesk is minimum)
R Floating-point number
R+ Non-negative floating-point number

R[a,b] Floating-point number in the range[a, b]

Rk k-tuple of floating-point numbers
P Position (x, y, z, w floating-point coordinates)
D Direction (x, y, z floating-point coordinates)
M4 4 × 4 floating-point matrix
I Image
Y Pointer (data type unspecified)

n × type n copies of typetype (n∗ indicatesn is minimum)

Table 6.1: State variable types

Version 1.1.10 (DRAFT - January 16, 2007)

6.2.
S

TAT
E

TA
B

LE
S

126

Get value Type
Get
Cmnd

Initial
Value Description Sec. Attribute

TEXTURE COORDARRAY 2 ∗ ×B IsEnabled False Texture coordinate array enable 2.8 vertex-array
TEXTURE COORDARRAY SIZE 2 ∗ ×Z+ GetIntegerv 4 Coordinates per element 2.8 vertex-array
TEXTURE COORDARRAY TYPE 2 ∗ ×Z4 GetIntegerv FLOAT Type of texture coordinates 2.8 vertex-array
TEXTURE COORDARRAY STRIDE 2 ∗ ×Z+ GetIntegerv 0 Stride between texture coordinates 2.8 vertex-array
TEXTURE COORDARRAY POINTER 2 ∗ ×Y GetPointerv 0 Pointer to the texture coordinate

array
2.8 vertex-array

♣ POINT SIZE ARRAY OES B IsEnabled False Point size array enable 2.8 vertex-array
♣ POINT SIZE ARRAY TYPE OES Z2 GetIntegerv FLOAT Type of point sizes 2.8 vertex-array
♣ POINT SIZE ARRAY STRIDE OES Z+ GetIntegerv 0 Stride between point sizes 2.8 vertex-array
♣ POINT SIZE ARRAY POINTER OES Y GetPointerv 0 Pointer to the point size array 2.8 vertex-array
ARRAY BUFFERBINDING Z+ GetIntegerv 0 current buffer binding 2.9 vertex-array
VERTEX ARRAY BUFFERBINDING Z+ GetIntegerv 0 vertex array buffer binding 2.9 vertex-array
NORMAL ARRAY BUFFERBINDING Z+ GetIntegerv 0 normal array buffer binding 2.9 vertex-array
COLOR ARRAY BUFFERBINDING Z+ GetIntegerv 0 color array buffer binding 2.9 vertex-array
TEXTURE COORDARRAY BUFFERBINDING 2 ∗ ×Z+ GetIntegerv 0 texcoord array buffer binding 2.9 vertex-array
♣ POINT SIZE ARRAY BUFFERBINDING OES Z+ GetIntegerv 0 point size array buffer binding 2.9 vertex-array
ELEMENT ARRAY BUFFERBINDING Z+ GetIntegerv 0 element array buffer binding 2.9.2 vertex-array

Tab
le

6
.5

.
Vertex

A
rray

D
ata

(co
n

t.)

V
ersion

1.1.10
(D

R
A

F
T

-
January

16,2007)

A.3. INVARIANCE RULES 148

• Writemasks (color, depth, stencil)

• Clear values (color, depth, stencil)

◦ Current values (color, normal, texture coords)

◦ Material properties (ambient, diffuse, specular, emission, shininess)

Strongly suggested:

• Matrix mode

• Matrix stack depths

• Alpha test parameters (other than enable)

• Stencil parameters (other than enable)

• Depth test parameters (other than enable)

• Blend parameters (other than enable)

• Logical operation parameters (other than enable)

• Pixel storage.

• Polygon offset parameters (other than enables, and except as they affect
the depth values of fragments)

Corollary 1 Fragment generation is invariant with respect to the state values
marked with• in Rule 2.

Corollary 2 The window coordinates (x, y, and z) of generated fragments are also
invariant with respect to

Required:

• Current values (color, normal, texture coords)

• Material properties (ambient, diffuse, specular, emission, shininess)

Rule 3 The arithmetic of each per-fragment operation is invariantexcept with re-
spect to parameters that directly control it (the parameters that control the alpha
test, for instance, are the alpha test enable, the alpha testfunction, and the alpha
test reference value).

Corollary 3 Images rendered into different color buffers sharing the same frame-
buffer, either simultaneously or separately using the samecommand sequence, are
pixel identical.

Version 1.1.10 (DRAFT - January 16, 2007)

Appendix B

Corollaries

The following observations are derived from the body and theother appendixes of
the specification. Absence of an observation from this list in no way impugns its
veracity.

1. The error semantics of upward compatible OpenGL ES revisions may
change. Otherwise, only additions can be made to upward compatible re-
visions.

2. GL query commands are not required to satisfy the semantics of theFlush
or theFinish commands. All that is required is that the queried state be con-
sistent with complete execution of all previously executedGL commands.

3. Application specified point size and line width must be returned as specified
when queried. Implementation dependent clamping affects the values only
while they are in use.

4. The mask specified as the third argument toStencilFuncaffects the operands
of the stencil comparison function, but has no direct effecton the update of
the stencil buffer. The mask specified byStencilMask has no effect on the
stencil comparison function; it limits the effect of the update of the stencil
buffer.

5. A material property that is attached to the current color via ColorMaterial
always takes the value of the current color. Attempts to change that material
property viaMaterial calls have no effect.

6. There is no atomicity requirement for OpenGL ES renderingcommands,
even at the fragment level.

150

151

7. Because rasterization of non-antialiased polygons is point sampled, poly-
gons that have no area generate no fragments when they are rasterized, and
the fragments generated by the rasterization of “narrow” polygons may not
form a continuous array.

8. OpenGL ES does not force left- or right-handedness on any of its coordinates
systems. Consider, however, the following conditions: (1)the object coordi-
nate system is right-handed; (2) the only commands used to manipulate the
model-view matrix areScale(with positive scaling values only),Rotate, and
Translate; (3) exactly one of eitherFrustum or Ortho is used to set the pro-
jection matrix; (4) the near value is less than the far value for DepthRange.
If these conditions are all satisfied, then the eye coordinate system is right-
handed and the clip, normalized device, and window coordinate systems are
left-handed.

9. (No pixel dropouts or duplicates.) Let two polygons sharean identical edge
(that is, there exist vertices A and B of an edge of one polygon, and vertices
C and D of an edge of the other polygon, and the coordinates of vertex A
(resp. B) are identical to those of vertex C (resp. D), and thestate of the the
coordinate transfomations is identical when A, B, C, and D are specified).
Then, when the fragments produced by rasterization of both polygons are
taken together, each fragment intersecting the interior ofthe shared edge is
produced exactly once.

10. The user defined clip planes, the spot directions, and thelight positions for
LIGHTi are transformed when they are specified. They are not transformed
when copying a context.

11. Dithering algorithms may be different for different components. In particu-
lar, alpha may be dithered differently from red, green, or blue, and an imple-
mentation may choose to not dither alpha at all.

Version 1.1.10 (DRAFT - January 16, 2007)

C.4. PACKAGING 159

Chris Tremblay, Motorola

Claude Knaus, Esmertec

Clay Montgomery, Nokia

Dan Petersen, Sun

Dan Rice, Sun

David Blythe, 3d4w and HI

David Yoder, Motorola

Doug Twilleager, Sun

Ed Plowman, ARM

Graham Connor, Imagination Technologies

Greg Stoner, Motorola

Hannu Napari, Hybrid

Harri Holopainen, Hybrid

Jacob Ström, Ericsson

Jani Vaarala, Nokia

Jerry Evans, Sun

John Metcalfe, Imagination Technologies

Jon Leech, Silicon Graphics

Kari Pulli, Nokia

Lane Roberts, Symbian

Madhukar Budagavi, Texas Instruments

Mathias Agopian, PalmSource

Mark Callow, HI

Mark Tarlton, Motorola

Mike Olivarez, Motorola

Neil Trevett, 3Dlabs

Nick Triantos, Nvidia

Petri Kero, Hybrid

Petri Nordlund, Bitboys

Phil Huxley, Tao Group

Version 1.1.10 (DRAFT - January 16, 2007)

C.4. PACKAGING 160

Remi Arnaud, Sony Computer Entertainment

Robert Simpson, Bitboys

Tero Sarkkinen, Futuremark

Timo Suoranta, Futuremark

Thomas Tannert, Silicon Graphics

Tomi Aarnio, Nokia

Tom McReynolds, Nvidia

Tom Olson, Texas Instruments

Ville Miettinen, Hybrid Graphics

C.4.4 Document History

version 1.1.10, draft of 2007/01/05 Initial revision of the full specification,
based on the 1.1.09 diff specification.

version 1.1.10, draft of 2007/01/09 Add Khronos copyright page. Remove
COLOR matrix from section 2.10.2. Reorganized compressed texture language
(section 3.7.3) and moved language specific to compressed paletted textures into a
new section 3.7.4; added more detail of the format of compressed paletted tex-
tures in memory and specified thatCompressedTexSubImage2Dmay not be
called for them. Removed state not present or not exposed in OpenGL ES , in-
cluding all texture level-specific parameters from section6.1.3, table 6.15 (state
per texture image), and the state table entries forCOLOR MATERIAL PARAMETER,
COLOR MATERIAL FACE, TEXTURE INTENSITY SIZE, TEXTURE DEPTH SIZE,
DRAW BUFFER, READ BUFFER, AUX BUFFERS, DOUBLEBUFFER, STEREO,
SMOOTH POINT SIZE GRANULARITY, andSMOOTH LINE WIDTH GRANULARITY.

version 1.1.10, draft of 2007/01/16 Numerous minor corrections from Tomi
Aarnio - add missing elements to tables (various data types,point size array ver-
tex array state), remove lingering references to commands,primitives (polygons),
functionality (texcoord generation, depth and intensity format textures, non-two-
dimensional textures, pixel rectangles, bitmaps, index color mode, evaluator maps,
attribute stacks, edge flags, point/line polygon mode, display lists) not in OpenGL
ES , fix numerous typos.

Version 1.1.10 (DRAFT - January 16, 2007)

