OpenGL’ ES
Common/Common-Lite Profile Specification

Version 1.1.10 Full Specification
DRAFT (March 31, 2007)

Editor (version 1.0): David Blythe
Editors (version 1.1): Aaftab Munshi, Jon Leech

Copyright(©) 2002-2007 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and corstanaterial proprietary
to the Khronos Group, Inc. It or any components may not beodkpred, repub-
lished, distributed, transmitted, displayed, broadcasitioerwise exploited in any
manner without the express prior written permission of Kiu® Group. You may
use this specification for implementing the functionalttgrein, without altering or
removing any trademark, copyright or other notice from thecfication, but the
receipt or possession of this specification does not conugyights to reproduce,
disclose, or distribute its contents, or to manufacture, s sell anything that it
may describe, in whole or in part.

Khronos Group grants express permission to any current &mContributor
or Adopter member of Khronos to copy and redistribute UNMBIEID versions
of this specification in any fashion, provided that NO CHARGHEnade for the
specification and the latest available update of the spatdit for any version
of the API is used whenever possible. Such distributed &patton may be re-
formatted AS LONG AS the contents of the specification areamainged in any
way. The specification may be incorporated into a produdtithaold as long as
such product includes significant independent work dewaldpy the seller. A link
to the current version of this specification on the Khronosuprweb-site should
be included whenever possible with specification distiing.

Khronos Group makes no, and expressly disclaims any, repta&sons or war-
ranties, express or implied, regarding this specificatincluding, without limita-
tion, any implied warranties of merchantability or fitness & particular purpose
or non-infringement of any intellectual property. Khron@soup makes no, and
expressly disclaims any, warranties, express or impliegarding the correctness,
accuracy, completeness, timeliness, and reliability efgpecification. Under no
circumstances will the Khronos Group, or any of its Pronstéontributors or
Members or their respective partners, officers, directemsployees, agents or rep-
resentatives be liable for any damages, whether direcireict special or conse-
guential damages for lost revenues, lost profits, or otregwarising from or in
connection with these materials.

Khronos is a trademark of The Khronos Group Inc. OpenGL igyjistered trade-
mark, and OpenGL ES is a trademark, of Silicon Graphics, Inc.

Copyright(©) 1992-2006 Silicon Graphics, Inc.

This document contains unpublished information of
Silicon Graphics, Inc.

This document is protected by copyright, and contains m#dion proprietary to
Silicon Graphics, Inc. Any copying, adaptation, distribat public performance,
or public display of this document without the express writconsent of Silicon
Graphics, Inc. is strictly prohibited. The receipt or passen of this document
does not convey any rights to reproduce, disclose, or big#iits contents, or to
manufacture, use, or sell anything that it may describe,hnle/or in part.

U.S. Government Restricted Rights Legend

Use, duplication, or disclosure by the Government is sulierestrictions set forth
in FAR 52.227.19(c)(2) or subparagraph (c)(1)(ii) of thgRs in Technical Data
and Computer Software clause at DFARS 252.227-7013 ardgimilar or succes-
sor clauses in the FAR or the DOD or NASA FAR Supplement. Ullipbied rights
reserved under the copyright laws of the United States. r@otar/manufacturer is
Silicon Graphics, Inc., 1600 Amphitheatre Parkway, Moimiéew, CA 94043.

OpenGL is a registered trademark of Silicon Graphics, Inc

Contents

Introduction 1
1.1 Formatting of Optional Features 1
1.2 Whatis the OpenGL ES Graphics System? 1
1.3 OpenGLESProfiles 2
1.4 Programmer’s Viewof OpenGLES 2
1.5 Implementors View of OpenGLES 3
1.6 OurView e 3
OpenGL ES Operation 4
2.1 OpenGLESFundamentals 4
2.1.1 Numeric Computation 6
22 GLState e 7
23 GLCommandSyntax, 8
24 BasicGLOperation 9
25 GLErors 12
2.6 Primitivesand Vertices oL 13
2.6.1 Primitive Types 14
27 CurrentVertexState oo 18
2.8 VerteX Arrays 19
2.9 BufferObjects. 22
2.9.1 \Vertex Arrays in Buffer Objects 25
2.9.2 Array Indices in Buffer Objects 25
2.10 Coordinate Transformations 26
2.10.1 Controlling the Viewport 27
2.10.2 Matrices. e 28
2.10.3 Normal Transformation. 32
2.11 Clipping o o 34
2.12 ColorsandColoring 36
2121 Lighting 38

CONTENTS ii

2.12.2 Lighting Parameter Specification 41
2.12.3 Color Material Tracking 44
2.124 LightingState 44
2125 Clamping e 44
2.12.6 Flatshading 44
2.12.7 Color and Texture Coordinate Clipping 45
2.12.8 FinalColorProcessing 46
3 Rasterization a7
3.1 Invariance 48
3.2 Antialiasing 48
3.2.1 Multisampling 49
3.3 Points 51
3.3.1 Basic Point Rasterization 52
3.3.2 Point Rasterization State 56
3.3.3 Point Multisample Rasterization 56
3.4 LineSegments 57
3.4.1 Basic Line Segment Rasterization 57
3.4.2 OtherLine SegmentFeatures 60
3.4.3 Line Rasterization State 62
3.4.4 Line Multisample Rasterization 62
3.5 Polygons 62
3.5.1 Basic Polygon Rasterization 62
3.5.2 DepthOffset 64
3.5.3 Polygon Multisample Rasterization 65
3.5.4 Polygon Rasterization State 65
3.6 PixelRectangles. 65
3.6.1 PixelStorageModes 66
3.6.2 Transfer of Pixel Rectangles 66
3.7 Texturing 72
3.7.1 Texture Image Specification 72
3.7.2 Alternate Texture Image Specification Commands ... 6 7
3.7.3 Compressed Texturelmages 78
3.7.4 Compressed Paletted Textures 80
3.7.5 Texture Parameters, 82
3.7.6 TextureWrapModes 83
3.7.7 Texture Minification 83
3.7.8 Texture Magnification 88
3.7.9 Texture Completeness 88
3.7.10 TextureState 89

Version 1.1.10 (DRAFT - March 31, 2007)

CONTENTS iii

3.7.11 TextureObjects 89
3.7.12 Texture Environments and Texture Functions 90
3.7.13 Texture Application. 95
3.8 FOQ e 97
3.9 Antialiasing Application, 98
3.10 Multisample PointFade 98
4 Per-Fragment Operations and the Framebuffer 99
4.1 Per-FragmentOperations 99
411 PixelOwnershipTest 100
412 ScissorTest 100
4.1.3 Multisample Fragment Operations 101
414 AlphaTest 102
415 StencilTest 103
4.1.6 DepthBufferTest. 104
417 Blending 104
4.1.8 Dithering 106
4.1.9 Logical Operation 107
4.1.10 Additional Multisample Fragment Operations 107
4.2 Whole Framebuffer Operations 109
4.2.1 Selecting a Buffer forWriting 109
4.2.2 Fine Control of BufferUpdates 109
423 ClearingtheBuffers 110
4.3 ReadingPixels 0 111
43.1 ReadingPixels 111
4.3.2 PixelDraw/Read State 114
5 Special Functions 115
51 FlushandFinish. 115
52 Hints. e 115
6 State and State Requests 117
6.1 QueryingGL State 117
6.1.1 SimpleQueries 0 117
6.1.2 DataConversions 118
6.1.3 Enumerated Queries 119
6.1.4 TextureQueries e 119
6.1.5 Pointer and String Queries 120
6.1.6 Buffer ObjectQueries 120
6.2 StateTables 121

Version 1.1.10 (DRAFT - March 31, 2007)

CONTENTS v

A Invariance 146
A.l Repeatability 146
A.2 Multi-pass Algorithms L. 147
A.3 InvarianceRules Lo 147
A4 WhatAllThisMeans 149

B Corollaries 150

C Profiles 152
C.1 Accuracy Requirements 152
C.2 Floating-Point and Fixed-Point Commands and State 152
C.3 Core Additions and Extensions 153

C.3.1 ByteCoordinates 155
C.3.2 FixedPoint 0.0, 155
C.3.3 Single-precision Commands 155
C.3.4 Compressed Paletted Texture 156
C.35 ReadFormat 156
C.3.6 MatrixPalette. 156
C.3.7 PointSprites 157
C.3.8 PointSize Array e 157
C.39 MatrixGet 157
C.3.10 Draw Texture o e 157
C.4 Packaging 158
C.4.1 HeaderFiles 158
C.4.2 Libraries 158
C.4.3 Acknowledgements 158
C.4.4 DocumentHistory 160
Index of OpenGL ES Commands 162

Version 1.1.10 (DRAFT - March 31, 2007)

List of Figures

2.1
2.2

2.3
2.4
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2

Block diagramofthe GL.
Creation of a processed vertex from vertex array coatds and
currentvalues.
Primitive assembly and processing.
Triangle strips, fans, and independent triangles. C
Vertex transformation sequence.
Processing of RGBAcolors.

Rasterization.
Rasterization of non-antialiased wide points.
Rasterization of antialiased wide points.
Visualization of Bresenham’s algorithm.
Rasterization of non-antialiased wide lines. e
The region used in rasterizing an antialiased line segme . . .
Transfer of pixel rectanglestothe GL.
A texture image and the coordinates used to accessiit.
Multitexture pipeline.,

Per-fragment operations.
OperationoReadPixels

61
66
74

List of Tables

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

GLcommandsuffixes oL 9
GLdatatypes e 10
SummaryofGLerrors o 13
Vertex array sizes (values per vertex) and datatypes 20
Buffer object parameters and theirvalues. 23
Buffer objectinitial state. 42
Componentconversions 37
Summary of lighting parameters. 39
Correspondence of lighting parameter symbols to names. . . 43
Triangle flatshading color selection. 45
PixelStoreparameters. L 66
TexImage2DandReadPixelstypes. 68
TexImage2DandReadPixelsformats. 68
Valid pixel format and type combinations. 68
Packed pixel formats. o oL 69
UNSI GNED.SHORT formats 70
Packed pixel field assignments. 71
Conversion from RGBA pixel components to internal texttom-

ponents. 73
CopyTeximageinternal format/color buffer combinations. 77
Specific compressed texture formats. 79
Palette entry pixel formats. 18
Texel data formats for compressed paletted textures. 81
Texture parameters and theirvalues. 82
Correspondence of filtered texture components. 91
Texture function®EPLACE, MODULATE, andDECAL 92
Texture function8LENDandADD. 92
COMBI NE texture functions. 93

Vi

LIST OF TABLES vii

3.18 Arguments focOMBI NE.RGB functions. 94
3.19 Arguments foCOVBI NE_LALPHA functions. 94
4.1 Blendingfunctions., 106
4.2 Arguments td.ogicOp and their corresponding operations. 108
4.3 PixelStoreparameters. o oo 112
4.4 ReadPixelsGL data types and reversed component conversion for-
mulas. 113
6.1 Statevariabletypeso 122
6.2 GL Internal primitive assembly state variables (inastdge) . . . 123
6.3 Current Values and Associated Data 4 12
6.4 VertexArrayData 125
6.5 VertexArray Data(cont.) 126
6.6 BufferObjectState 127
6.7 Transformationstate 128
6.8 Coloring 129
6.9 Lighting (see also Table 2.8 fordefaults) 130
6.10 Lighting (cont.) 131
6.11 Rasterization 132
6.12 Multisampling 133
6.13 Textures (state per texture unit and binding point) 134
6.14 Textures (state pertexture object) 135
6.15 Texture Environment and Generation 136
6.16 PixelOperations i 137
6.17 Framebuffer Control 138
6.18 Pixels 139
6.19 Hints. 140
6.20 Implementation Dependent Values 41 1
6.21 Implementation Dependent Values (cont.) 142
6.22 Implementation Dependent Values (cont.) 143
6.23 Implementation Dependent Pixel Depths 144
6.24 Miscellaneous 145
C.1 Common and Common-Lite commands. 154
C.2 OES Extension Disposition 155

Version 1.1.10 (DRAFT - March 31, 2007)

Chapter 1

Introduction

This document describes the OpenGL ES graphics system:itnbahow it acts,
and what is required to implement it. We assume that the relaale at least a
rudimentary understanding of computer graphics. This méamiliarity with the
essentials of computer graphics algorithms as well as fantyl with basic graph-
ics hardware and associated terms.

1.1 Formatting of Optional Features

Some features in the specification are considered optianaDpenGL ES imple-
mentation may or may not choose to provide them. Portionfi@fspecification
which are optional are so described where the optional featare first defined.
State table entries which are optional are typtagainst a gray background .

1.2 What is the OpenGL ES Graphics System?

OpenGL ES is a software interface to graphics hardware. iitegface consists of
a set of procedures and functions that allow a programmepédcify the objects
and operations involved in producing high-quality grajphitnages, specifically
color images of three-dimensional objects.

Most of OpenGL ES requires that the graphics hardware coatfiamebuffer.
Many OpenGL ES calls pertain to drawing objects such as ggiimes and poly-
gons, but the way that some of this drawing occurs (such as \@hgaliasing or
texturing is enabled) relies on the existence of a framebuffurther, some of
OpenGL ES is specifically concerned with framebuffer malaifon.

OpenGL ES 1.1 is based on the OpenGL 1.5 graphics systens tasigned
primarily for graphics hardware running on embedded andileakevices. It re-

1.3. OPENGL ES PROFILES 2

moves a great deal of redundant and legacy functionalitylevetuding a few new
features. The differences between OpenGL ES and OpenGLoamescribed in
detail in this specification; however, they are summarizeé icompanion doc-
ument tittedOpenGL ES Common/Common-Lite Profile Specification (diffar
specification)

1.3 OpenGL ES Profiles

This specification described twaofilesfor OpenGL ES : Common and Common-
Lite. While many commands are shared by both profiles, some codsraaa only
supported by one profile.

The Common-Lite profile differs from the Common profile pririhain be-
ing targeted at a simpler class of graphics system not stipgdrigh-performance
floating-point calculations. The Common-Lite profile sugpoonly commands
taking fixed-point arguments, while the Common profile alsmuides many equiv-
alent commands taking floting-point arguments

Specific differences between the two profiles, including ansary of
command®only supported in the Common profile, are documented in Agpe@
and in appropriate sections of the specification.

1.4 Programmer’s View of OpenGL ES

To the programmer, OpenGL ES is a set of commands that allewkcification
of geometric objects in two or three dimensions, togethaghwbmmands that
control how these objects are rendered into the framebufipenGL ES provides
an immediate-mode interface, meaning that specifying gecblcauses it to be
drawn.

A typical program that uses OpenGL ES begins with calls tanape&vindow
into the framebuffer into which the program will draw. Theralls are made to
allocate an OpenGL ES context and associate it with the windbese steps may
be performed using a companion API such as the Khronos Natatéorm Graph-
ics Interface (EGL), and are documented separatélgce a context is allocated,
the programmer is free to issue OpenGL ES commands. Sonsearallused to
draw simple geometric objects (i.e. points, line segmeats] polygons), while
others affect the rendering of these primitives includiogvtihey are lit or colored
and how they are mapped from the user’s two- or three-dimbeasimodel space
to the two-dimensional screen. There are also calls whidradp directly on the
framebuffer, such as reading pixels

Version 1.1.10 (DRAFT - March 31, 2007)

1.5. IMPLEMENTOR’S VIEW OF OPENGL ES 3

1.5 Implementor’s View of OpenGL ES

To the implementor, OpenGL ES is a set of commands that dfieabperation of
graphics hardware. If the hardware consists only of an addigde framebuffer,
then OpenGL ES must be implemented almost entirely on the @B&). More
typically, the graphics hardware may comprise varying degrof graphics accel-
eration, from a raster subsystem capable of rendering iwesional lines and
polygons to sophisticated floating-point processors dapabtransforming and
computing on geometric data. The OpenGL ES implementosk i®to provide
the CPU software interface while dividing the work for eache@GL ES com-
mand between the CPU and the graphics hardware. This divisigst be tailored
to the available graphics hardware to obtain optimum parérce in carrying out
OpenGL ES calls.

OpenGL ES maintains a considerable amount of state infesmat his state
controls how objects are drawn into the framebuffer. Somihisfstate is directly
available to the user: he or she can make calls to obtain itevaSome of it,
however, is visible only by the effect it has on what is dravdne of the main
goals of this specification is to make OpenGL ES state inftionaexplicit, to
elucidate how it changes, and to indicate what its effe@s ar

1.6 Our View

We view OpenGL ES as a state machine that controls a set offispg@wing
operations. This model should engender a specificationstitatfies the needs of
both programmers and implementors. It does not, howevegssarily provide a
model for implementation. An implementation must produesuits conforming
to those produced by the specified methods, but there may Y& toacarry out a
particular computation that are more efficient than the geeiied.

Version 1.1.10 (DRAFT - March 31, 2007)

Chapter 2

OpenGL ES Operation

2.1 OpenGL ES Fundamentals

OpenGL ES (henceforth, the “GL") is concerned only with reridg into a frame-
buffer (and reading values stored in that framebuffer). réhs no support for
other peripherals sometimes associated with graphicsmaaed such as mice and
keyboards. Programmers must rely on other mechanisms, asithe Khronos
OpenKODE API, to obtain user input.

The GL drawsprimitivessubject to a number of selectable modes. Each primi-
tive is a point, line segment, or triangle. Each mode may b@gad independently;
the setting of one does not affect the settings of othersqatih many modes may
interact to determine what eventually ends up in the frarfieu Modes are set,
primitives specified, and other GL operations describeddmndsgcommandsn
the form of function or procedure calls.

Primitives are defined by a group of one or mesgtices A vertex defines a
point, an endpoint of an edge, or a corner of a triangle wheoestdges meet. Data
(consisting of positional coordinates, colors, normatel gexture coordinates) are
associated with a vertex and each vertex is processed indep#y, in order, and
in the same way. The only exception to this rule is if the grofipertices must
be clipped so that the indicated primitive fits within a specified regiom this
case vertex data may be modified and new vertices createdtypeef clipping
depends on which primitive the group of vertices represents

Commands are always processed in the order in which theyeasved, al-
though there may be an indeterminate delay before the sftdc command are
realized. This means, for example, that one primitive mastiawn completely
before any subsequent one can affect the framebuffer. dtraksans that queries
and pixel read operations return state consistent with ¢et@pxecution of all pre-

2.1. OPENGL ES FUNDAMENTALS 5

viously invoked GL commands. In general, the effects of a Ginmand on either
GL modes or the framebuffer must be complete before any sules¢ command
can have any such effects.

In the GL, data binding occurs on call. This means that dasaquhto a com-
mand are interpreted when that command is received. Evdmeitbmmand re-
quires a pointer to data, those data are interpreted whecathes made, and any
subsequent changes to the data have no effect on the GLguhksame pointer
is used in a subsequent command).

The GL provides direct control over the fundamental opersatiof 3D and 2D
graphics. This includes specification of such parametetsaasformation matri-
ces, lighting equation coefficients, antialiasing meth@usl pixel update opera-
tors. It does not provide a means for describing or modelimgmlex geometric
objects. Another way to describe this situation is to sayitimaGL provides mech-
anisms to describe how complex geometric objects are tormered rather than
mechanisms to describe the complex objects themselves.

The model for interpretation of GL commands is client-seréhat is, a pro-
gram (the client) issues commands, and these commandstaneréted and pro-
cessed by the GL (the server). A server may maintain a numb@t.ccontexts
each of which is an encapsulation of current GL state. A tlesy choose taon-
nectto any one of these contexts. Issuing GL commands when tlgggmois not
connectedo acontextresults in undefined behavior.

The effects of GL commands on the framebuffer are ultimatelytrolled by
the window system that allocates framebuffer resourcess the window system
that determines which portions of the framebuffer the GL rmagess at any given
time and that communicates to the GL how those portions auetated. There-
fore, there are no GL commands to configure the framebuffanitialize the GL.
Similarly, display of framebuffer contents on a monitor €D panel(including
the transformation of individual framebuffer values by lsuechniques as gamma
correction) is not addressed by the GL. Framebuffer cordiom occurs outside
of the GL in conjunction with the window system; the initedtion of a GL con-
text occurs when the window system allocates a window for &idering. The
EGL API defines a portable mechanism for creating GL contemtswindows for
rendering into, which may be used in conjunction with diierr native platform
window systems.

The GL is designed to be run on a range of graphics platforntls vérying
graphics capabilities and performance. To accommodasevtriety, we specify
ideal behavior instead of actual behavior for certain GLrapens. In cases where
deviation from the ideal is allowed, we also specify the sulleat an implemen-
tation must obey if it is to approximate the ideal behavicefully. This allowed
variation in GL behavior implies that two distinct GL implemtations may not

Version 1.1.10 (DRAFT - March 31, 2007)

2.1. OPENGL ES FUNDAMENTALS 6

agree pixel for pixel when presented with the same input ewsen run on identi-
cal framebuffer configurations.
Finally, command names, constants, and types are prefixgeriGL (bydgl,
GL_, and@., respectively inC) to reduce name clashes with other packages. The
prefixes are omitted in this document for clarity.

2.1.1 Numeric Computation

The GL must perform a number of numeric computations durmegdourse of its
operation.

Implementations of the Common profile will normally perfocomputations
in floating-point, and must meet the range and precisionireopents defined un-
der”Floating-Point Computation” below.

Implementations of the Common-Lite profile will normallyrfim computa-
tions in fixed-point, and must meet the more relaxed rangepagcision require-
ments defined undéFixed-Point Computation” below. However, Common-Lite
implementations are free to use floating-point computafitimey wish.

Floating-Point Computation

We do not specify how floating-point numbers are to be rempteseor how
operations on them are to be performed. We require simphyrilnabers’ floating-
point parts contain enough bits and that their exponentdield large enough
so that individual results of floating-point operations aoeurate to about part
in 10°. The maximum representable magnitude of a floating-poimibver used
to represent positional or normal coordinates must be at #3; the maximum
representable magnitude for colors or texture coordinaest be at least'’. The
maximum representable magnitude for all other floatingypwalues must be at
least232. 2 - 0 = 0 - = = 0 for any non-infinite and non-Na. 1 -z = = - 1 = z.
40 =04z =z. 0° = 1. (Occasionally further requirements will be specified.)
Most single-precision floating-point formats meet thespinements.

Any representable floating-point value is legal as input @Lacommand that
requires floating-point data. The result of providing a eaibat is not a floating-
point number to such a command is unspecified, but must notte&L interrup-
tion or termination. In IEEE arithmetic, for example, prdwvig a negative zero or a
denormalized number to a GL command yields predictabldtsgsuhile providing
a NaN or an infinity yields unspecified results.

Fixed-Point Computation

Internal computations can use either fixed-point or floapoit arithmetic.

Version 1.1.10 (DRAFT - March 31, 2007)

2.2. GL STATE 7

Fixed-point computations must be accurate to withizt 1. The maximum repre-
sentable magnitude for a fixed-point number used to reptessitional or normal
coordinates must be at leasf; the maximum representable magnitude for colors
or texture coordinates must be at le28t. The maximum representable magnitude
for all other fixed-point values must be atleast. z-0 = 0-z = 0. 1.2 = 2-1 = z.
z+0=0+2z ==z 0°= 1. Fixed-point computations may lead to overflows or
underflows. The results of such computations are undefingdnhbst not lead to
GL interruption or termination.

General Requirements

The following constraints must be met by all implementagiowhether using
floating- or fixed-point computation.

Let the notation 16.16 indicate a 32-bit two’s-complemexrédipoint num-
ber with 16 bits of fraction. If an incoming vertex is repratable using 16.16,
the modelview and projection matrices are representabl&6ii6, and the re-
sulting eye-space and NDC-space vertices (see section) &réQepresentable
in 16.16 (when computed using intermediate representatwith sufficient dy-
namic range), then the transformation pipeline must compiué eye-space and
NDC-space vertices to some reasonable accuracy (i.eflaveés not acceptable).

Some calculations require division. In such cases (inogidnplied divisions
required by vector normalizations), a division by zero progs an unspecified re-
sult but must not lead to GL interruption or termination.

2.2 GL State

The GL maintains considerable state. This document enueseeach state vari-
able and describes how each variable can be changed. Farsesgrpf discussion,
state variables are categorized somewhat arbitrarily by tnction. Although we
describe the operations that the GL performs on the franfebhuhe framebuffer
is not a part of GL state.

We distinguish two types of state. The first type of stateledaGL server
state resides in the GL server. The majority of GL state falls ittis category.
The second type of state, called @lient state resides in the GL client. Unless
otherwise specified, all state referred to in this documsrL server state; GL
client state is specifically identified. Each instance of a&htext implies one
complete set of GL server state; each connection from atdicea server implies
a set of both GL client state and GL server state.

While an implementation of the GL may be hardware dependbist,discus-
sion is independent of the specific hardware on which a GL jg@mented. We are

Version 1.1.10 (DRAFT - March 31, 2007)

2.3. GL COMMAND SYNTAX 8

therefore concerned with the state of graphics hardwarg when it corresponds
precisely to GL state.

2.3 GL Command Syntax

GL commands are functions or procedures. Various groupsmoineands perform
the same operation but differ in how arguments are suppbdtiém. To conve-
niently accommodate this variation, we adopt a notatiordéscribing commands
and their arguments.

GL commands are formed fromreamefollowed, depending on the particular
command, by up to 4 characters. The first character inditaéesumber of values
of the indicated type that must be presented to the commamels@cond character
or character pair indicates the specific type of the argumedbit integer, 32-bit
integer, 32-bit fixed-point, or single-precision floatipgint. The final character, if
present, is/, indicating that the command takes a pointer to an array ¢goveof
values rather than a series of individual arguments. TwoiBp&xamples:

voi d Colordf(float r, fl oat g, fl oat b, fl oat a);
and
voi d GetFloatv(enumvalug fl oat *data);

These examples show the ANGteclarations for these commands. In general,
a command declaration has the fdrm

rtype Name{e1234}{e i x f ub ui }{ev}
([args,] Targl,..., Targ\N [,args]);

rtypeis the return type of the function. The bracdg)(enclose a series of char-
acters (or character pairs) of which one is selectethdicates no character. The
arguments enclosed in brackefar¢s ,] and[, args]) may or may not be present.
The N argumentsirgl througharg/V have typer, which corresponds to one of the
type letters or letter pairs as indicated in Table 2.1 (if¢hare no letters, then the
arguments’ type is given explicitly). If the final characiemotv, thenN is given
by the digitl, 2, 3, or 4 (if there is no digit, then the number of arguments is fixed).
If the final character iv, then onlyargl is present and it is an array &f values
of the indicated type. Finally, we indicate ansi gned type by the shorthand of
prepending al to the beginning of the type name (so that, for instancesi gned

i nt is abbreviatedii nt).

The declarations shown in this document apply to ANNSLanguages such @&++ and Ada
that allow passing of argument type information admit sienpleclarations and fewer entry points.

Version 1.1.10 (DRAFT - March 31, 2007)

2.4. BASIC GL OPERATION 9

| Letter | Correspondingal Type |

i i nt

X fixed
f fl oat
ub | ubyte
ui ui nt

Table 2.1: Correspondence of command suffix letters to Guraemnt types. Refer
to Table 2.2 for definitions of the GL types.

For example,
voi d Normal3{xf}(T arg);
indicates the two declarations

voi d Normal3f(fl oat argl, fl oat arg2, fl oat arg3);
voi d Normal3x(fi xed argl, fixedarg2, fixedarg3);

Arguments whose type is fixed (i.e. not indicated by a suffixtmcommand)
are of one of the 13 types (or pointers to one of these) surastin Table 2.2.

The mapping of GL data types to data types of a specific largybagling are
part of the language binding definition and may be platfoepahdent. Type con-
version and type promotion behavior when mixing actual amoh&l arguments of
different data types are specific to the language bindingpaitfiorm. For exam-
ple, the C language includes automatic conversion betwaeger and floating-
point data types, but does not include automatic convelsatween the nt and
fixed, orfl oat andfi xed GL types since théi xed data type is not a dis-
tinct built-in type. Regardless of language binding, greumtype converts to
fixed-point without scaling, and integer types are conekttefixed-point by mul-
tiplying by 216,

2.4 Basic GL Operation

Figure 2.1 shows a schematic diagram of the GL. Commands #et&L on the
left. Some commands specify geometric objects to be drawitewthers control
how the objects are handled by the various stages.

The first stage operates on geometric primitives descrilyegetices: points,
line segments, and triangles. In this stage vertices ansfttemed and lit, and

Version 1.1.10 (DRAFT - March 31, 2007)

2.4. BASIC GL OPERATION 10

GL Type Minimum | Description
Bit Width

bool ean 1 Boolean
byte 8 Signed binary integer
ubyt e 8 Unsigned binary integer
short 16 Signed 2's complement binary integer
ushort 16 Unsigned binary integer
i nt 32 Signed 2's complement binary integer
ui nt 32 Unsigned binary integer
fixed 32 Signed 2’s complement 16.16 scaled

integer
cl anmpx 32 16.16 scaled integer clamped[th 1]
si zei 32 Non-negative binary integer size
enum 32 Enumerated binary integer value
intptr ptrbits | Signed 2's complement binary integer
si zei ptr ptrbits Non-negative binary integer size
bitfield 32 Bit field
fl oat 32 Floating-point value
cl anpf 32 Floating-point value clamped {0, 1]

Table 2.2: GL data types. GL types are not C types. Thus, famgte, GL
typei nt is referred to asaLi nt outside this document, and is not necessarily
equivalent to the C typént. An implementation may use more bits than the
number indicated in the table to represent a GL type. Coirgetpretation of
integer values outside the minimum range is not required;eher.

ptrbits is the number of bits required to represent a pointer typeatler words,
typesi nt pt r andsi zei pt r must be sufficiently large as to store any address.

Version 1.1.10 (DRAFT - March 31, 2007)

2.4. BASIC GL OPERATION 11

Per-Vertex
Operations
P |Per-Fragment
primitive [|Rasterization [Operations —»1 Framebuffer
Assembly
A A
Texture
Memory
» Pixel |
Operations

Figure 2.1. Block diagram of the GL.

primitives are clipped to a viewing volume in preparatiom flee next stage, ras-
terization. The rasterizer produces a series of framebuffielresses and values
using a two-dimensional description of a point, line segmentriangle. Each
fragmentso produced is fed to the next stage that performs operationsdivid-
ual fragments before they finally alter the framebuffer. Jdeperations include
conditional updates into the framebuffer based on incoraimg) previously stored
depth values (to effect depth buffering), blending of indogrfragment colors with
stored colors, as well as masking and other logical operatim fragment values.

Values may also be read back from the framebuffer or copieth fone portion
of the framebuffer to another. These transfers may inclueestype of decoding
or encoding.

This ordering is meant only as a tool for describing the Glt,a®a strict rule
of how the GL is implemented, and we present it only as a meansgganize the
various operations of the GL.

Version 1.1.10 (DRAFT - March 31, 2007)

2.5. GL ERRORS 12

2.5 GL Errors

The GL detects only a subset of those conditions that coulcbhsidered errors.
This is because in many cases error checking would adveirs@isct the perfor-
mance of an error-free program.

The command

enum GetError (voi d);

is used to obtain error information. Each detectable esassigned a numeric
code. When an error is detected, a flag is set and the codeaslegt: Further
errors, if they occur, do not affect this recorded code. W&etError is called,
the code is returned and the flag is cleared, so that a furtharwill again record

its code. If a call tadGetError returnsNO.ERROR, then there has been no detectable
error since the last call tGetError (or since the GL was initialized).

To allow for distributed implementations, there may be sa\i¢éag-code pairs.
In this case, after a call t&etError returns a value other thadO.ERROR each
subsequent call returns the non-zero code of a distincicibag- pair (in unspecified
order), until all nonNO.ERROR codes have been returned. When there are no more
non-NO_ERROR error codes, all flags are reset. This scheme requires sosii&/po
number of pairs of a flag bit and an integer. The initial stdtallflags is cleared
and the initial value of all codes NO ERRCR.

Table 2.3 summarizes GL errors. Currently, when an errorifiagt, results of
GL operation are undefined only @JT_OF_MEMORY has occurred. In other cases,
the command generating the error is ignored so that it hasfect@n GL state or
framebuffer contents. If the generating command returred@ey it returns zero. If
the generating command modifies values through a pointenaegt, no change is
made to these values. These error semantics apply only ta1Gisenot to system
errors such as memory access errors. This behavior is thientusehavior; the
action of the GL in the presence of errors is subject to change

Three error generation conditions are implicit in the diggimn of every GL
command. First, if a command that requires an enumerate Valpassed a sym-
bolic constant that is not one of those specified as allowfablthat command, the
error | NVALI D.ENUMresults. This is the case even if the argument is a pointer to
a symbolic constant if that value is not allowable for theegicommand. Using

a symbolic constant in one of the Common or Common-Lite msfivhen that
constant is only defined to be accepted by the other profilealgb result in the
errorl NVALI D_ENUM

Second, if a negative number is provided where an argumdygpefti zei is
specified, the errorNVALI D_VALUE results.

Version 1.1.10 (DRAFT - March 31, 2007)

2.6. PRIMITIVES AND VERTICES 13

Error Description Offending com-
mand ignored?
| NVALI D.ENUM enumargument out of range Yes
| NVALI D.VALUE Numeric argument out of range| Yes
| NVALI D_.OPERATI ON || Operation illegal in current state Yes
STACK_OVERFLOW Command would cause a stackres
overflow
STACK_UNDERFLOW Command would cause a stagkres
underflow
OUT_OF_MEMORY Not enough memory left to exg- Unknown
cute command

Table 2.3: Summary of GL errors

Finally, if memory is exhausted as a side effect of the exenuif a command,
the errorOUT_OF_MEMORY may be generated. Otherwise errors are generated only
for conditions that are explicitly described in this spesfion.

2.6 Primitives and Vertices

In the GL, geometric objects are drawn by specifying a sesfesoordinate sets
that include vertices and optionally normals, texture dowates, and colors. Co-
ordinate sets are specified using vertex arrays (see sei)n There are seven
geometric objects that are drawn this way: points (inclgdmint sprites), con-
nected line segments (line strips), line segment loopsaraggd line segments
triangle strips, triangle fans, and separated triangles.

Each vertex is specified with two, three, or four coordinatés addition, a
current norma] multiple current texture coordinate setandcurrent colormay be
used in processing each vertex. Normals are used by the Gghting calcula-
tions; the current normal is a three-dimensional vector thay be set by sending
three coordinates that specify it. Texture coordinatesrd@he how a texture im-
age is mapped onto a primitive. Multiple sets of texture dowtes may be used
to specify how multiple texture images are mapped onto aipiven The number
of texture units supported is implementation dependeniniugt be at least two.
The number of texture units supported can be obtained byyouethe value of
MAX_TEXTURE_UNI TS.

A color is associated with each vertex. This color is eitregddl on the current
color or produced by lighting, depending on whether or nghting is enabled.

Version 1.1.10 (DRAFT - March 31, 2007)

2.6. PRIMITIVES AND VERTICES 14

Texture coordinates are similarly associated with eachexer Multiple sets of
texture coordinates may be associated with a vertex. F@@reummarizes the as-
sociation of auxiliary data with a transformed vertex toguoe gorocessed vertex

The current values are part of GL state. \ertices, normaisg, taxture co-
ordinates are transformed. Color may be affected or redldmelighting The
processing indicated for each current value is applied dhevertex that is sent to
the GL.

The methods by which vertices, normals, texture coordsated color are sent
to the GL, as well as how normals are transformed and how vertices apped to
the two-dimensional screen, are discussed later.

Before color has been assigned to a vertbg state required by a vertex is the
vertex’s coordinates, its normal, the current materiapperties (see section 2.12.2),
and its multiple texture coordinate sets. Because cologasent is done vertex-
by-vertex, a processed vertex comprises the vertex's auates, its assigned color
and its multiple texture coordinate sets.

Figure 2.3 shows the sequence of operations that buitfsrative (point, line
segment, or triangle) from a sequence of vertices. Afterimipive is formed, it
is clipped to a viewing volume. This may alter the primitive altering vertex
coordinates, texture coordinates, and colorthe case of line and triangle primi-
tives, clipping may insert new vertices into the primitivehe vertices defining a
primitive to be rasterized have texture coordinates andrassociated with them

2.6.1 Primitive Types

A sequence of vertices is passed to the GL using the comnaraigArrays or
DrawElements (see section 2.8). There is no limit to the number of vertites
may be specified, other than the size of the vertex arrays.

The modeparameter of these commands determines the type of pranitiy
be drawn using these coordinate sets. The types, and thesporrdingmode
parameters, are:

Points. A series of individual points may be specified witihodePO NTS.
Each vertex defines a separate point or point sprite

Line Strips. A series of one or more connected line segments may be sjgkcifie
with modeLl NE_STRI P. At least two vertices must be provided. In this case, the
first vertex specifies the first segment’s start point whikeshcond vertex specifies
the first segment’s endpoint and the second segment’s stiautt gn general, the
ith vertex (fori > 1) specifies the beginning of thith segment and the end of the
1 — 1st. The last vertex specifies the end of the last segment.lyfane vertex is
specified, then no primitive is generated.

Version 1.1.10 (DRAFT - March 31, 2007)

2.6. PRIMITIVES AND VERTICES 15

Vertex Array Coordinates
and Current Values In

VERTEX_ARRAY o .
Vertex / Normal Transformed
NORMAL_ARRAY o Current Transformation Coordinates
Normal3f ~] Normal
Processed
Vertex Out
\ i
COLOR_ARRAY Current .
. > Colors »| Lighting |=e Associated Data
Colordf, Materialf & Materials N (Colors and
Texture
—— y
Coordinates)
A A
TEXTURE_COORD_ARRAY current Texture
1 Texture > -
- Matrix O
MultiTexCoord4f COOI’d Set 0
TEXTURE_COORD_ARRAY current TeXtuI‘e
> Texture > "
Multi Matrix 1
MultiTexCoord4f Coord Set 1

Figure 2.2. Creation of a processed vertex from vertex azomydinates and curren
values. Two texture units are shown; however, multitexigirnay support a greate
number of units depending on the implementation.

L

Version 1.1.10 (DRAFT - March 31, 2007)

2.6. PRIMITIVES AND VERTICES 16

Point culling;
Coordinates Line Segmeg;
> € ———
. or Triangle
] Point, Clipping
Processed Line Segment, or
rocess Triangle Rasterization
(Primitive)
Associated Data Assembly Color
» Processing o

|

Primitive type
(from DrawArrays or
DrawElements mode)

Figure 2.3. Primitive assembly and processing.

The required state consists of the processed vertex prddrara the preceding
vertex that was passed (so that a line segment can be gehfaateit to the current
vertex), and a boolean flag indicating if the current vertethe first vertex.

Line Loops. Line loops may be specified witmodeL| NE_LOOP. Loops are
the same as line strips except that a final segment is addedtif® final specified
vertex to the first vertex.

The required state consists of the processed first vertedadition to the state
required for line strips.

Separate Lines.Individual line segments, each specified by a pair of vestice
may be specified witlmodeLl NES. The first two vertices passed define the first
segment, with subsequent pairs of vertices each definingname segment. If the
number of specified vertices is odd, then the last one is gghorhe required state
is the same as for line strips but it is used differently: acpssed vertex holding
the first endpoint of the current segment, and a boolean fifigating whether the
current vertex is odd or even (a segment start or end).

Triangle strips. A triangle strip is a series of triangles connected along
shared edges, specified by giving a series of defining vertisgh mode
TRI ANGLE_STRI P. In this case, the first three vertices define the first triarfghd
their order is significant). Each subsequent vertex definesva triangle using

Version 1.1.10 (DRAFT - March 31, 2007)

2.6. PRIMITIVES AND VERTICES 17

NNZRNY

(@) (b) (c)

Figure 2.4. (a) A triangle strip. (b) A triangle fan. (c) InuEndent triangles. The
numbers give the sequencing of the vertices in order withénvertex arrays. Note
that in (a) and (b) triangle edge ordering is determined kyfitist triangle, while in
(c) the order of each triangle’s edges is independent of tiherdriangles.

that point along with two vertices from the previous triamglf fewer than three
vertices are specified, no primitives are produced. See&igd.

The required state to support triangle strips consists dd@ifidicating if the
first triangle has been completed, two stored processeategrt(called vertex A
and vertex B), and a one bit pointer indicating which storedex will be replaced
with the next vertex. The pointer is initialized to point tertex A. Each successive
vertex toggles the pointer. Therefore, the first vertex west as vertex A, the
second stored as vertex B, the third stored as vertex A, aond.sAny vertex after
the second one sent forms a triangle from vertex A, vertexB the current vertex
(in that order).

Triangle fans. A triangle fan is the same as a triangle strip with one excep-
tion: each vertex after the first always replaces vertex Beftivo stored vertices.
Triangle fans are specified withodeTRI ANGLE_FAN.

Separate Triangles. Separate triangles are specified wittodeTRI ANGLES.

In this case, Th&i + 1st, 3i 4+ 2nd, and3i + 3rd vertices (in that order) determine
atriangle foreach = 0,1,...,n — 1, where there arén + k vertices drawnk is
either 0, 1, or 2; ifk is not zero, the finak vertices are ignored. For each triangle,
vertex A is vertex3: and vertex B is verte®i + 1. Otherwise, separate triangles
are the same as a triangle strip.

The order of the vertices in a triangle generated from a gfiaustrip, triangle
fan, or separate triangles is significant in lighting andygoh rasterization (see

Version 1.1.10 (DRAFT - March 31, 2007)

2.7. CURRENT VERTEX STATE 18

sections 2.12.1 and 3.5.1).

2.7 Current Vertex State

Current values are used in associating auxiliary data witkreex when a vertex
array defining that data is not enabled, as described inose2iB. A current value
may be changed at any time by issuing an appropriate command.

The current RGBA color is set using the commands

voi d Color4{xf}(Tred, Tgreen T blug T alpha);
voi d Color4ub(ubyt e red, ubyt e green ubyt e blue
ubyt e alpha);

The conversion of integer color components (R, G, B, and Aloating-point
values is discussed in section 2.12.

Color4f andColor4x accept values nominally between 0.0 and 1.0. 0.0 corre-
sponds to the minimum while 1.0 corresponds to the maximuacfime depen-
dent) value that a component may take on in the framebuféer ¢gction 2.12 on
colors and coloring). Values outsid@ 1] are not clamped.

The current normal is set using the commands

voi d Normal3{xf}(Tnx, Tny, Tnz),
The current homogeneous texture cordinates are set ustrgpthmands
voi d MultiTexCoord4 {xf}(enumtexture Ts, Tt, Tr, Tq);

The current coordinate set to be modified is given byttheure parameter, and
the s, ¢, r, and ¢ coordinates are set as specifietextureis a symbolic con-
stant of the formiTEXTURE:, indicating that texture coordinate seis to be mod-
ified. The constants obeJEXTURE: = TEXTUREO + ¢ (i is in the range O to
k — 1, wherek is the implementation-dependent number of texture unitsele
by MAX_TEXTURE_UNI TS).

Gets of CURRENT _TEXTURE_COORDS return the texture coordinate set defined
by the value ofACTI VE_TEXTURE (see section 2.8).

Specifying an invalid texture coordinate set for tegtureargument oMulti-
TexCoord4 results in undefined behavior.

The state required to support vertex specification consifeur values to
store the current RGBA color, three values to store the atimermal, and four
values for each of the texture units supported by the imphdation to store the

Version 1.1.10 (DRAFT - March 31, 2007)

2.8. VERTEX ARRAYS 19

current texture coordinatest, r, andg. The initial current color iR, G, B, A) =
(1,1,1,1). The initial current normal has coordinatés 0, 1). The initial values
of s, ¢, andr of the current texture coordinates for each texture unizare, and
the initial value ofq is one.

2.8 \ertex Arrays

Vertex data is placed into arrays stored in the client’s asgslrspace (described
here) or in the server’s address space (described in se&@nBlocks of data in
these arrays may then be used to specify multiple geometrigtives through the
execution of a single GL command. The client may specify dpdoplus the value

of MAX_ TEXTURE_UNI TS arrays: one each to store vertex coordinates, normals,
colors, point sizes, and one or more texture coordinate $étscommands

voi d VertexPointer(i nt size enumtype si zei stride
voi d *pointer);

voi d NormalPointer(enumtype si zei stride
voi d *pointer);

voi d ColorPointer(i nt size enumtype si zei stride
voi d *pointer);

voi d PointSizePointerOES enumtype si zei stride
voi d *pointer);

voi d TexCoordPointer(i nt size enumtype si zei stride
voi d *painter);

describe the locations and organizations of these arrayise&ch commandype
specifies the data type of the values stored in the asiag.when present, indicates
the number of values per vertex that are stored in the arragaBse normals are
always specified with three values and point sizes are alwpgsified with one
value, NormalPointer and PointSizePointerOEShave nosizeargument. Table
2.4 indicates the allowable values feizeandtype (when present). Faiypethe
valuesBYTE, UNSI GNED_BYTE, SHORT, FI XED, andFLQOAT, indicate typedyt e,
ubyt e,short,fixed, andf | oat, respectively. The errarNVALI D_-VALUE is
generated ikizeis specified with a value other than that indicated in thegtabl

The one, two, three, or four values in an array that corredpiora single vertex
comprise an arraglement The values within each array element are stored se-
guentially in memory. Ifstrideis specified as zero, then array elements are stored

Version 1.1.10 (DRAFT - March 31, 2007)

2.8. VERTEX ARRAYS 20

[Command | Sizes| Types \
VertexPointer 2,3,4| byte,short,fixed,fl oat
NormalPointer 3 byte,short,fixed,fl oat
ColorPointer 4 ubyte,fixed,fl oat
PointSizePointerOES| 1 fixed,float
TexCoordPointer 2,34 | byte,short,fixed,fl oat

Table 2.4: Vertex array sizes (values per vertex) and datasty

sequentially as well. The erroNVALI D_VALUE is generated iktride is negative.
Otherwise pointers to théh and(i + 1)st elements of an array differ bstride
basic machine units (typically unsigned bytes), the poittehe (i + 1)st element
being greater. For each commarpjnter specifies the location in memory of the
first value of the first element of the array being specified.

An individual array is enabled or disabled by calling one of

voi d EnableClientStatg enumarray);
voi d DisableClientStatd enumarray);

with array set to VERTEXARRAY, NORVAL ARRAY, COLORARRAY,
PO NT_SI ZE_.ARRAY_CES, or TEXTURE_COORD_ARRAY, for the vertex, normal,
color, point size, or texture coordinate array, respebtive

The command

voi d ClientActiveTexture(enumtexture);

is used to select the vertex array client state parametel® tmodified by
the TexCoordPointer command and the array affected BgableClientStateand
DisableClientStatewith parametem EXTURE_COORD_ARRAY. This command sets
the client state variableL| ENT_ACTI VE_TEXTURE. Each texture unit has a client
state vector which is selected when this command is invokbds state vector in-
cludes the vertex array state. This call also selects wigixtute units’ client state
vector is used for queries of client state.

Specifying an invalidexturegenerates the errom™\VALI D_ENUM Valid values
of textureare the same as for tHdultiTexCoord commands described in sec-
tion 2.7.

Transferring Array Elements

Version 1.1.10 (DRAFT - March 31, 2007)

2.8. VERTEX ARRAYS 21

When an array elementis transferred to the GL by th®rawArrays or
DrawElementscommands, each enabled array is treated differently.

For the vertex array, i§izeis two then ther andy coordinates of the vertex are
specified by the array; theandw coordinates are implicitly set to zero and one,
respectively. Ifsizeis three thent, y, andz are specified and is implicitly set to
one. Ifsizeis four then all coordinates are specified, allowing the dlidim of an
arbitrary point in projective space.

For the color array, ifizeis three then thel component is implicitly set to 1.
If sizeis four then all components are specified. If the color arseagat enabled,
then the current color defined by tkimlor commands is used.

For the normal array, all three coordinates are always &pdciByte, short,
or integer values are converted to floating-point valuesdiated for the corre-
sponding (signed) type in table 2.7. If the normal array is not enaptedn the
current normal defined by tidormal commands is used.

For the point size array, the single size is always speciffatie point size ar-
ray is not enabled, then the current point size defineBdintSize(see section 3.3)
is used

For the texture coordinate arrayssiteis two then thes andt coordinates are
specified and the andq coordinates are implicitly set to zero and one, respegtivel
If sizeis three thers, t, andr are specified and is implicitly set to one. Ifsizeis
four then all coordinates are specified. If a texture co@tdirarray is not enabled,
then the current texture coordinate defined by MhdtiTexCoord commands is
used.

The command

voi d DrawArrays (enummode i nt first, si zei count);

constructs a sequence of geometric primitives by sucaadgstvansferring ele-
ments first through first + count — 1 of each enabled array to the Ginode
specifies what kind of primitives are constructed, as definesgction 2.6.1.

The current color, normal, point size, and texture coordisaeach become
indeterminate after the execution DrawArrays, if the corresponding array is
enabled. Current values corresponding to disabled arne@yaa modified by the
execution ofDrawArrays.

Specifying first < 0 results in undefined behavior. Generating the error
I NVALI D_VALUE is recommended in this case.

The command

voi d DrawElementd enummode si zei count enumtype
voi d *indices);

Version 1.1.10 (DRAFT - March 31, 2007)

2.9. BUFFER OBJECTS 22

constructs a sequence of geometric primitives by sucaagsivansferring the
countelements whose indices are storedindicesto the GL. Theith element
transferred byDrawElementswill be taken from elemenindices[i] of each en-
abled arraytypemust be one oINSI GNED_BYTE or UNSI GNED_SHORT, indicating
that the values iindicesare indices of GL typeibyt e or ushort , respectively.
modespecifies what kind of primitives are constructed; it acedpte same values
as themodeparameter oDrawArrays .

The current color, normal, point size, and texture coordisare each indeter-
minate after the execution BfrawElements if the corresponding array is enabled.
Current values corresponding to disabled arrays are notfireddby the execution
of DrawElements

If the number of supported texture units (the valud®X_TEXTURE_UNI TS) is
k, then the client state required to implement vertex arraysists of an integer for
the client active texture unit selectdrs k£ boolean valuest + k£ memory pointers,

4 + k integer stride valuesi + k& symbolic constants representing array types, and
2 + k integers representing values per element. In the init&iesthe client active
texture unit selector iIIEXTUREO, the boolean values are each false, the memory
pointers are each null, the strides are each zero, and ggeirgt representing values
per element are each four. The array types are €aciAT for the Common profile
andFI XeD for the Common-Lite profile.

2.9 Buffer Objects

The vertex data arrays described in section 2.8 are storetleimt memory. It is
sometimes desirable to store frequently used client datdy as vertex array data,
in high-performance server memory. GL buffer objects pleva mechanism that
clients can use to allocate, initialize, and render fromhsumemory.

The name space for buffer objects is the unsigned integeitb, 2ero re-
served for the GL. A buffer object is created by binding an sedi name to
ARRAY_BUFFER. The binding is effected by calling

voi d BindBuffer (enumtarget ui nt buffer);

with targetset toARRAY_BUFFER andbuffer set to the unused name. The resulting
buffer object is a new state vector, initialized with a zerped memory buffer, and
comprising the state values listed in Table 2.5.

BindBuffer may also be used to bind an existing buffer object. If the liénd
successful no change is made to the state of the newly boufedt bbject, and any
previous binding tdargetis broken.

Version 1.1.10 (DRAFT - March 31, 2007)

2.9. BUFFER OBJECTS 23

| Name | Type | Initial Value | Legal Values \

BUFFER.SI ZE | integer 0 any non-negative integer
BUFFER.USAGE | enum | STATI C.DRAW| STATI C_.DRAW DYNAM C_DRAW

Table 2.5: Buffer object parameters and their values.

While a buffer object is bound, GL operations on the targsthach it is bound
affect the bound buffer object, and queries of the targethickva buffer object is
bound return state from the bound object.

In the initial state the reserved name zero is boundRBAY BUFFER. There
is no buffer object corresponding to the name zero, so chdéetmpts to modify
or query buffer object state for the targ&RRAY_BUFFER while zero is bound will
generate GL errors.

Buffer objects are deleted by calling

voi d DeleteBufferg si zei n, const ui nt *buffers);

bufferscontainsn names of buffer objects to be deleted. After a buffer object i
deleted it has no contents, and its name is again unused.etdmasnes iruffers
are silently ignored, as is the value zero.

The command

voi d GenBuffers(si zei n, ui nt *buffers);

returns n previously unused buffer object names bnffers These names are
marked as used, for the purposesG@nBuffers only, but they acquire buffer state
only when they are first bound, just as if they were unused.

While a buffer object is bound, any GL operations on that cbgfect any
other bindings of that object. If a buffer object is deletedile it is bound, all
bindings to that object in the current context (i.e. in theedtd that calledelete-
Buffers) are reset to zero. Bindings to that buffer in other contextd other
threads are not affected, but attempting to use a deletddrbofanother thread
produces undefined results, including but not limited tospgme GL errors and
rendering corruption. Using a deleted buffer in anothertexinor thread may not,
however, result in program termination.

The data store of a buffer object is created and initializgdddling

voi d BufferData(enumtarget si zei ptr size const
voi d *data, enumusage);

Version 1.1.10 (DRAFT - March 31, 2007)

2.9. BUFFER OBJECTS 24

| Name | Value |

BUFFER SI ZE | size
BUFFER.USAGE | usage

Table 2.6: Buffer object initial state.

with target set to ARRAY_BUFFER, sizeset to the size of the data store in basic
machine units, andata pointing to the source data in client memory. diita is
non-null, then the source data is copied to the buffer olgjeletta store. Ifatais
null, then the contents of the buffer object’s data storeuaidefined.

usageis specified as one of two enumerated values, indicating stpected
application usage pattern of the data store. The values are:

STATI C.DRAW The data store contents will be specified once by the apjitat
and used many times as the source for GL drawing commands.

DYNAM C_DRAW The data store contents will be respecified repeatedly byaphe
plication, and used many times as the source for GL drawingncands.

usageis provided as a performance hint only. The specified usalye \toes
not constrain the actual usage pattern of the data store.

BufferData deletes any existing data store, and sets the values of ffex bu
object’s state variables as shown in table 2.6.

Clients must align data elements consistent with the requents of the client
platform, with an additional base-level requirement thmbéset within a buffer to
a datum comprisingV basic machine units be a multiple .

If the GL is unable to create a data store of the requested Hizeerror
OUT_OF_MEMORY is generated.

To modify some or all of the data contained in a buffer obgedgta store, the
client may use the command

voi d BufferSubData(enumtarget i nt pt r offset
Si zei ptr size const voi d *data);

with target set toARRAY_BUFFER. offsetandsizeindicate the range of data in the
buffer object that is to be replaced, in terms of basic mazhimts.dataspecifies a
region of client memorgizebasic machine units in length, containing the data that
replace the specified buffer range. ARVALI D.VALUE error is generated ibffset

or sizeis less than zero, or tffset+ sizeis greater than the value BUFFER S| ZE.

Version 1.1.10 (DRAFT - March 31, 2007)

2.9. BUFFER OBJECTS 25

2.9.1 \Vertex Arrays in Buffer Objects

Blocks of vertex array data may be stored in buffer objectéhwhe same for-
mat and layout options supported for client-side verterysmr However, it is ex-
pected that GL implementations will (at minimum) be optiedzor data with all
components represented falsoat (for the Common profile) of i xed (for the
Common-Lite profile), as well as for color data with compatserepresented as
ubyt e.

The client state associated with each vertex array typeded a buffer object
binding point The commands that specify the locations and organizatibwsrtex
arrays copy the buffer object name that is boundR®AY_BUFFER to the binding
point corresponding to the vertex array of the type beingiigel. For example,
the NormalPointer command copies the value ARRAY_BUFFER.BI NDI NG (the
queriable name of the buffer binding corresponding to tingeieARRAY_BUFFER)
to the client state variablSORVMAL_ARRAY_BUFFER BI NDI NG.

Rendering command3rawArrays andDrawElementsoperate as previously
defined, except that data for enabled vertaxays are sourced from buffers if the
array’s buffer binding is non-zero. When an array is souriteth a buffer object,
the pointer value of that array is used to compute an offediasic machine units,
into the data store of the buffer object. This offset is coteduby subtracting a
null pointer from the pointer value, where both pointers taeated as pointers to
basic machine units

It is acceptable for vertexarrays to be sourced from any combination of client
memory and various buffer objects during a single rendeoiperation.

2.9.2 Array Indices in Buffer Objects

Blocks of array indices may be stored in buffer objects with same format op-
tions that are supported for client-side index arrays. idijt zero is bound to
ELEMENT_ARRAY_BUFFER, indicating thatDrawElementsis to source its indices
from arrays passed as tivalicesparameters.

A buffer object is bound t@&LEMENT_ARRAY_BUFFER by calling BindBuffer
with targetset toEL EMENT _ARRAY_BUFFER, andbufferset to the name of the buffer
object. If no corresponding buffer object exists, one isiatized as defined in
section 2.9.

The commandBufferData and BufferSubData may be used witharget

2To resume using client-side vertex arrays after a buffeectbhas been bound, calind-
Buffer (ARRAY_BUFFER,0) and then specify the client vertex array pointer usiregappropriate
command from section 2.8

Version 1.1.10 (DRAFT - March 31, 2007)

2.10. COORDINATE TRANSFORMATIONS 26

set to ELEMENT_ARRAY_BUFFER. In such event, these commands operate in the
same fashion as described in section 2.9, but on the buffezrdly bound to the
ELEMENT _ARRAY_BUFFER target.

While a non-zero buffer object name is boundBICEMENT_ARRAY_BUFFER,
DrawElements sources its indices from that buffer object, usingiitdicespa-
rameter as offsets into the buffer object in the same fash®described in sec-
tion 2.9.1.

Buffer objects created by binding an unused nam@RBAY BUFFER and to
ELEMENT_ARRAY_BUFFER are formally equivalent, but the GL may make different
choices about storage implementation based on the initidirg. In some cases
performance will be optimized by storing indices and arratadn separate buffer
objects, and by creating those buffer objects with the spwading binding points.

2.10 Coordinate Transformations

Vertices, normals, and texture coordinates are transfoinedore their coordinates
are used to produce an image in the framebuffer. We begin avitescription of
how vertex coordinates are transformed and how this tramsftion is controlled.

Figure 2.5 diagrams the sequence of transformations tleafpyplied to ver-
tices. The vertex coordinates that are presented to the <eamedobject co-
ordinates Themodel-viewmatrix is applied to these coordinates to yielgkeco-
ordinates. Then another matrix, called thejection matrix, is applied to eye
coordinates to yielatlip coordinates. A perspective division is carried out on clip
coordinates to yieldhormalized deviceoordinates. A finaliewporttransforma-
tion is applied to convert these coordinates wiadow coordinates

Object coordinates, eye coordinates, and clip coordiretefour-dimensional,
consisting ofz, y, z, andw coordinates (in that order). The model-view and pro-

jection matrices are thus x 4.
Lo

If a vertex in object coordinates is given y‘zo and the model-view matrix

o
Wo
is M, then the vertex’s eye coordinates are found as

Te Lo
y@ — M yO
Ze Zo
We Wo

Version 1.1.10 (DRAFT - March 31, 2007)

2.10. COORDINATE TRANSFORMATIONS

X Projecti _ Normalized
Object » Model-View Eye > rojection Clip Perspective Device
Coordinates Matrix Coordinates Matrix Coordinates Division Coordinates

Viewport Window

Transformation Coordinates

Figure 2.5. Vertex transformation sequence.

Similarly, if P is the projection matrix, then the vertex’s clip coordirsatee

Le Le
yC — P ye
Zc Ze
We We

The vertex’s normalized device coordinates are then

T xc/wc
(:%i) = (yc/wc> .
24 Ze/We

2.10.1 Controlling the Viewport

The viewport transformation is determined by the viewowidth and height in
pixels, p, andp,, respectively, and its centés,, o,) (also in pixels). The vertex’s
Ty
window coordinates(Yw) , are given by
Zw

Loy (p2/2)q + 0p
Yo | = (py/2)ya + oy :
Zw [(f =n)/2]2a+ (n+ f)/2
The factor and offset applied tg encoded by, and f are set using

Version 1.1.10 (DRAFT - March 31, 2007)

27

2.10. COORDINATE TRANSFORMATIONS 28

voi d DepthRange{ cl anpf n, cl anpf f);
voi d DepthRangeX cl anpx n, cl anpx f);

Each ofn andf are clamped to lie withifD, 1], as are all arguments of typpe anpf
or cl anpx. z, is taken to be represented in fixed-point with at least as rbiay
as there are in the depth buffer of the framebuffer. We asdhatethe fixed-point
representation used represents each vafige™ — 1), wherek € {0,1,...,2™ —
1}, ask (e.g. 1.0 is represented in binary as a string of all ones).

Viewport transformation parameters are specified using

voi d Viewport(int x, i nt'y, sizei w, sizei h);

wherex andy give thex andy window coordinates of the viewport’s lower left
corner andv andh give the viewport’s width and height, respectively. Thenpert
parameters shown in the above equations are found from tleges asw, =
x+w/2andoy =y + h/2; p, = w, py = h.

Viewport width and height are clamped to implementatiopatelent maxi-
mums when specified. The maximum width and height may be fdynidsuing
an appropriategGet command (see Chapter 6). The maximum viewport dimen-
sions must be greater than or equal to the visible dimensibtise display being
rendered tol NVALI D_VALUE is generated if eithew or his negative.

The state required to implement the viewport transfornmatgfour integers
and two clamped floating-point values. In the initial stateandh are set to the
width and height, respectively, of the window into which (@& is to do its ren-
dering. o, ando, are set taw/2 andh /2, respectively.n and f are set td).0 and
1.0, respectively.

2.10.2 Matrices

The projection matrix and model-view matrix are set and riiediwith a variety
of commands. The affected matrix is determined by the cumeirix mode. The
current matrix mode is set with

voi d MatrixMode (enummode);

which takes one of the pre-defined constamt&XTURE, MODELVI EW or

PRQIECTI ON as the argument valuBEXTURE is described later in section 2.10.2.

If the current matrix mode i$/ODELVI EW then matrix operations apply to the

model-view matrix; ifPRQIECTI ON, then they apply to the projection matrix.
The two basic commands for affecting the current matrix are

Version 1.1.10 (DRAFT - March 31, 2007)

2.10. COORDINATE TRANSFORMATIONS 29

voi d LoadMatrix {xf}(T m[16]);
voi d MultMatrix {xf}(T m[16]);

LoadMatrix takes a pointer to & x 4 matrix stored in column-major order as 16
consecutive fixed- or floating-point values, i.e. as

ap as ag a3

az aeg aipo a4

az a4 a11 ais

ag ag a12 0Aaie
(This differs from the standard row-maj@ ordering for matrix elements. If the
standard ordering is used, all of the subsequent transt@mmequations are trans-
posed, and the columns representing vectors become rows.)

The specified matrix replaces the current matrix with the pmiated to.Mult-
Matrix takes the same type argumentlamdMatrix , but multiplies the current
matrix by the one pointed to and replaces the current matitix e product. IiC
is the current matrix and/ is the matrix pointed to byviultMatrix ’'s argument,
then the resulting current matrig;’, is

C'=C- M.
The command
voi d Loadldentity (voi d);

effectively callsLoadMatrix with the identity matrix:

0 0
0 0
1 0
0 0 0 1

There are a variety of other commands that manipulate nestri®Rotate,
Translate, Scale Frustum, andOrtho manipulate the current matrix. Each com-
putes a matrix and then invok&aultMatrix with this matrix. In the case of

S = O

1
0
0

voi d Rotate{xf}(T#H, Tx, Ty, Tz);

f gives an angle of rotation in degrees; the coordinates ottwve are given by
v = (z y 2)T. The computed matrix is a counter-clockwise rotation atloetine
through the origin with the specified axis when that axis igag up (i.e. the
right-hand rule determines the sense of the rotation angleg matrix is thus

Version 1.1.10 (DRAFT - March 31, 2007)

2.10. COORDINATE TRANSFORMATIONS 30

Letu=v/|[v]|=(2' ¢ =)

then
R =uu’ + cos (I — uu’) +sin6S.

The arguments to
voi d Translate{xf}(Tx, Ty, Tz);

give the coordinates of a translation vector(agy z)”. The resulting matrix is a
translation by the specified vector:

SO O =
O O = O
O = O O
—_ N e oy

voi d Scalgxf}i(Tx, Ty, Tz),

produces a general scaling along they-, andz- axes. The corresponding matrix
is

oo o8
oo O
O O

= o O O

For
voi d Frustum{xf}(TI, Tr, Th, Tt, Tn, Tf);

the coordinategl b — n)” and(r t —n)? specify the points on the near clipping
plane that are mapped to the lower left and upper right ceroérthe window,

respectively (assuming that the eye is locatedoad 0)”). f gives the distance
from the eye to the far clipping plane. If eitheror f is less than or equal to zero,

Version 1.1.10 (DRAFT - March 31, 2007)

2.10. COORDINATE TRANSFORMATIONS 31

[is equal tor, b is equal tat, orn is equal tof, the errorl NVALI D_VALUE results.
The corresponding matrix is

2n r41
P 20 | 0
t
+n n
0 0 - -7
0 0 — 0

voi d Ortho{xf}(TI, Tr, Th, Tt, Tn, Tf),

describes a matrix that produces parallel projectidnb — n)” and(r t — n)”
specify the points on the near clipping plane that are mappdue lower left and
upper right corners of the window, respectivefygives the distance from the eye
to the far clipping plane. If is equal tor, b is equal tot, or n is equal tof, the
error | NVALI D_VALUE results. The corresponding matrix is

2

r—I

0
0
0

_r+l

o O

=
3
T
3

o~
OO\‘MO
57

=T
[

For each texture unit, & x 4 matrix is applied to the corresponding texture
coordinates. This matrix is applied as

mip ms Mg M3 s
mz Mg Mg Mi4 t
m3 my7 Mmi1 Mis r|’
my Mg Mi2 Mie q

where the left matrix is the current texture matrix. The nxais applied to the
current texture coordinateand the resulting transformed coordinates become the
texture coordinates associated with a vertex. Setting tagixrmode toTEXTURE
causes the already described matrix operations to apphettekture matrix.

There is also a corresponding texture matrix stack for eagtute unit. To
change the stack affected by matrix operations, seathige texture unit selector
by calling

voi d ActiveTexture(enumtexture);
The selector also affects calls modifying texture envirenirstate, texture coordi-

nate generation state, texture binding state, and quefr@stbese state values as
well as current texture coordinates.

Version 1.1.10 (DRAFT - March 31, 2007)

2.10. COORDINATE TRANSFORMATIONS 32

Specifying an invalidexturegenerates the errom™\VALI D_ENUM Valid values
of textureare the same as for tHdultiTexCoord commands described in sec-
tion 2.7.

There is a stack of matrices for each of matrix modd¢=DELVI EW and
PRQIECTI ON, and for each texture unit. FOMODELVI EWmode, the stack depth
is at least 16 (that is, there is a stack of at least 16 mo@s\-wnatrices). For the
other modes, the depth is at le@sfTexture matrix stacks for all texture units have
the same depth. The current matrix in any mode is the matrithertop of the
stack for that mode.

voi d PushMatrix(voi d);

pushes the stack down by one, duplicating the current miattith the top of the
stack and the entry below it.

voi d PopMatrix(voi d);

pops the top entry off of the stack, replacing the currentrixatith the matrix
that was the second entry in the stack. The pushing or poppkes place on the
stack corresponding to the current matrix mode. Popping taxradf a stack with
only one entry generates the er@FACK_UNDERFLOW pushing a matrix onto a full
stack generateSTACK OVERFLOW

When the current matrix mode BEXTURE, the texture matrix stack of the
active texture unit is pushed or popped.

The state required to implement transformations consisés anteger for the
active texture unit selector, a four-valued integer intliga the current matrix
mode, one stack of at least twtox 4 matrices for each dPRQJIECTI ON and each
texture unit,TEXTURE; and a stack of at least 6x 4 matrices forMODELVI EW
Each matrix stack has an associated stack pointer. Igjttakre is only one matrix
on each stack, and all matrices are set to the identity. Titialiactive texture unit
selector iISTEXTUREQ, and the initial matrix mode iSODELVI EW

2.10.3 Normal Transformation

Finally, we consider how the model-view matrix and transfation state affect
normals. Before use in lighting, normals are transformedy® coordinates by a
matrix derived from the model-view matrix. Rescaling andmalization opera-
tions are performed on the transformed normals to make thatrangth prior to
use in lighting. Rescaling and normalization are conteblg

voi d Enable(enumtarget);

Version 1.1.10 (DRAFT - March 31, 2007)

2.10. COORDINATE TRANSFORMATIONS 33

and
voi d Disablgl enumtarget);

with target equal toRESCALE_NORVMAL or NORVALI ZE. This requires two bits of
state. The initial state is for normals not to be rescaledoomalized.

If the model-view matrix isM, then the normal is transformed to eye coordi-
nates by3

(TL$/ ny/ nz/ q/):(n$ Ny Ny Q)'Mil

T
where, if Z are the associated vertex coordinates, then
w
0, w =0,
xr
4= —(ng Ny n.)| vy (2.1)
- = , w#0

Implementations may choose instead to transformp n, n.) to eye coor-
dinates using

(na' ny' nt)=(ny ny nz)-Mu_1

where M, is the upper leftmost 3x3 matrix taken froid.
Rescale multiplies the transformed normals by a scaleifacto

(nx” nyl/ nzl/) — f (nx/ ny/ nzl)
If rescaling is disabled, thefi = 1. If rescaling is enabled, thehis computed as

1

Vms1? + maa? + mg3

2

m;; denotes the matrix element in roinand columnj of M ~!, numbering the
topmost row of the matrix as row 1 and the leftmost column dsroo 1
Note that if the normals sent to GL were unit length and the ehwtew matrix
uniformly scales space, then rescale makes the transfonardals unit length.
Alternatively, an implementation may choose f as

Here, normals are treated as row vectors and transformeddtynpltiplication by the inverse of
the transformation matrixif normals are treated as column vectors, then the trameftion would
instead be performed by premultiplying the normal by thesise transposéy/ ~ 7.

Version 1.1.10 (DRAFT - March 31, 2007)

2.11. CLIPPING 34

1
\/nx/Q 4 ny/Q _|_nz/2

recomputingf for each normal. This makes all non-zero length normalslangth
regardless of their input length and the nature of the mei- matrix.

After rescaling, the final transformed normal used in ligbtin s, is computed
as

=

nf =m (nwl/ ny// nz//)
If normalization is disabled, them = 1. Otherwise

1
2 2 2
\/nx// + 1, +n."

Because we specify neither the floating-point format nomtigans for matrix
inversion, we cannot specify behavior in the case of a peanlyditioned (nearly
singular) model-view matriX\/. In case of an exactly singular matrix, the trans-
formed normal is undefined. If the GL implementation detewsithat the model-
view matrix is uninvertible, then the entries in the invertaatrix are arbitrary. In
any case, neither normal transformation nor use of the flam&d normal may
lead to GL interruption or termination.

m =

2.11 Clipping

Primitives are clipped to thelip volume In clip coordinates, theiew volumes
defined by

—wWe < xe < We

—We < Ye < We -

—We < ze < We

This view volume may be further restricted by as manynadient-defined clip
planes to generate the clip volume. i§6 an implementation dependent maximum
that must be at leadt) Each client-defined plane specifies a half-space. The clip
volume is the intersection of all such half-spaces with tl@vwolume (if no
client-defined clip planes are enabled, the clip volumeasview volume).

A client-defined clip plane is specified with

voi d ClipPlane{xf}(enump, const T eqn[4]);

Version 1.1.10 (DRAFT - March 31, 2007)

2.11. CLIPPING 35

The value of the first argumenp, is a symbolic constanGL| P_PLANE:, wherei
is an integer between 0 and— 1, indicating one of: client-defined clip planes.
eqgnis an array of four values. These are the coefficients of aepigquation in
object coordinatespq, p2, p3, andpy (in that order). The inverse of the current
model-view matrix is applied to these coefficients, at theetithey are specified,
yielding

(i ph Py Pi)=(p1 p2 p3 pa) M

(where M is the current model-view matrix; the resulting plane eturmais unde-
fined if M is singular and may be inaccuratelif is poorly-conditioned) to obtain
the plane equation coefficients in eye coordinates. All {goivith eye coordinates
(Ze Ye 2e we)T that satisfy

(p1 Py p3 D))

lie in the half-space defined by the plane; points that do atisfy this condition
do not lie in the half-space.

Client-defined clip planes are enabled with the genErieble command and
disabled with theDisable command. The value of the argument to either com-
mand isCLI P_.PLANE; wherei is an integer between 0 and specifying a value
of i enables or disables the plane equation with indexThe constants obey
CLI P_.PLANE; = CLI P_.PLANEQ + .

If the primitive under consideration is a point, then clippipasses it un-
changed if it lies within the clip volume; otherwise, it issdarded.

If the primitive is a point sprite, it is normally clipped againt. If the point
would normally be clipped, but some of the fragments resglfrom point sprite
rasterization would otherwise be visible, implementationay choose to scissor
fragments resulting from rasterization, instead of clifgpthe entire primitivé.

If the primitive is a line segment, then clipping does nothta it if it lies en-
tirely within the clip volume and discards it if it lies ergly outside the volume.
If part of the line segment lies in the volume and part liessmid, then the line
segment is clipped and new vertex coordinates are compatezh& or both ver-
tices. A clipped line segment endpoint lies on both the nagline segment and
the boundary of the clip volume.

This clipping produces a valu@, < ¢ < 1, for each clipped vertex. If the
coordinates of a clipped vertex aReand the original vertices’ coordinates dpe

“This results in smooth transitions as point sprites move thaesedge of the clip volume, while
the normal behavior causes “popping” of the point sprite.

Version 1.1.10 (DRAFT - March 31, 2007)

2.12. COLORS AND COLORING 36

andP,, thent is given by
P=tP + (1 — t)PQ.

The value oft is used in color and texture coordinate clipping (sectid?2 7).

If the primitive is a triangle, then it is passed if every orfeite edges lies
entirely inside the clip volume and either clipped or disieat otherwise. Clip-
ping may cause triangle edges to be clipped, but becausescivity must be
maintained, these clipped edges are connected by new ddgéietalong the clip
volume’s boundary. Thus, clipping may require the intrdec of new vertices
into a triangle, creating a more genepallygon

If it happens that a triangle intersects an edge of the cliprae’s boundary,
then the clipped triangle must include a point on this bouynéage

A line segment or triangle whose vertices hayevalues of differing signs may
generate multiple connected components after clipping.if@ilementations are
not required to handle this situation. That is, only the iporof the primitive that
lies in the region ofw. > 0 need be produced by clipping.

Primitives rendered with clip planes must satisfy a comg@etarity crite-
rion. Suppose a single clip plane with coefficietid p, p5 p}) (or a num-
ber of similarly specified clip planes) is enabled and a seokprimitives are
drawn. Next, suppose that the original clip plane is redftiwith coefficients
(-py —-ph —ps —p)) (and correspondingly for any other clip planes) and
the primitives are drawn again (and the GL is otherwise insti@e state). In this
case, primitives must not be missing any pixels, nor may aslgpbe drawn twice
in regions where those primitives are cut by the clip planes.

The state required for clipping is at least one set of plan@atgns (each set
consisting of four coefficients) and at least one correspanbit indicating which
of these client-defined plane equations are enabled. Imttal istate, all client-
defined plane equation coefficients are zero and all plaredisabled.

2.12 Colors and Coloring

Figure 2.6 diagrams the processing of colors before rastiéon. Incoming colors
arrive in one of several formats. Table 2.7 summarizes tmearsions that take
place on R, G, B, and A components depending on which verdidheoColor
command was invoked to specify the components. As a reslithitéd precision,
some converted values will not be represented exactly.

Next, lighting, if enabled, produces a color. If lightingdsabled, the current
color is used in further processing. After lighting, coler® clamped to the range
[0,1]. After clamping, a primitive may b#atshaded indicating that all vertices

Version 1.1.10 (DRAFT - March 31, 2007)

2.12. COLORS AND COLORING 37

[0,2K-1] — Convert to o
[0.0,1.0] Current [, =0,
Clamp to
RGBA _ O o 20]
[_2k 2|<_1]_> Convert to o Color Lighting [#=O .0, 1.
' [-1.0,1.0] o *
float
grs———— S (I S — i
Clipping
Convert to L Flatshade?
fixed—point A :
v Primitive |
' : Clipping !

Figure 2.6. Processing of colors. See Table 2.7 for thepnégation ofk.

GL Type | Conversion |

ubyte c/(28 —1)
byte (2c+1)/(28 - 1)
ushort c/(2'0 — 1)
short (2c+1)/(2% —1)
fixed /216

float c

Table 2.7: Component conversions. Color and normamponentsd) are con-
verted to an internal floating-point representatigh), (Using the equations in this
table. All arithmetic is done in the internal floating-pofiermat These conver-
sions apply to components specified as parameters to GL codsvand to com-
ponents in pixel data. The equations remain the same evée iintiplemented
ranges of the GL data types are greater than the minimumrestjtanges. (Refer
to table 2.2)

Version 1.1.10 (DRAFT - March 31, 2007)

2.12. COLORS AND COLORING 38

of the primitive are to have the same colors. Finally, if arptive is clipped, then
colors (and texture coordinates) must be computed at theegrintroduced or
modified by clipping.

2.12.1 Lighting

GL lighting computes colors for each vertex sent to the GLisThfiaccomplished
by applying an equation defined by a client-specified lightimodel to a collection
of parameters that can include the vertex coordinates, dbedmates of one or
more light sources, the current normal, and parametersidgfihe characteristics
of the light sources and a current material.

Lighting is turned on or off using the generitnable or Disable commands
with the symbolic value.l GHTI NG. If lighting is off, the current color is assigned
to the vertex color. If lighting is on, the color computdbm the current lighting
parameters is assigned to the vertex color.

Lighting Operation

A lighting parameter is of one of five types: color, positiatirection, real, or
boolean. A color parameter consists of four floating-pogiues, one for each of
R, G, B, and A, in that order. There are no restrictions on tlmsvable values for
these parameters. A position parameter consists of foulirfp@oint coordinates
(z, v, z, andw) that specify a position in object coordinates (hay be zero,
indicating a point at infinity in the direction given hy, ¢y, andz). A direction
parameter consists of three floating-point coordinates,(andz) that specify a
direction in object coordinates. A real parameter is onetifigapoint value. The
various values and their types are summarized in Table 28 r&sult of a lighting
computation is undefined if a value for a parameter is spekifiat is outside the
range given for that parameter in the table.

There aren light sources, indexed by= 0, ...,n—1. (n is an implementation
dependent maximum that must be at least 8.) Note that theltetdues ford,;;
ands,y; differ for s = 0 andi > 0.

Before specifying the way that lighting computes colors, imteoduce oper-
ators and notation that simplify the expressions involvéfdc; andc, are col-
ors without alpha where; = (r1,91,b1) andce = (79, g2, b2), then define
c1 * co = (r17r2,9192,b1b2). Addition of colors is accomplished by addition of
the components. Multiplication of colors by a scalar mean#iplying each com-
ponent by that scalar. H; andd, are directions, then define

di ©dy = max{d1 -do, 0}

Version 1.1.10 (DRAFT - March 31, 2007)

2.12. COLORS AND COLORING 39
| Parameter|| Type | Default Value [Description \
Material Parameters
acm color (0.2,0.2,0.2,1.0) | ambient color of material
den color (0.8,0.8,0.8,1.0) | diffuse color of material
Sem color (0.0,0.0,0.0,1.0) | specular color of material
€cm color (0.0,0.0,0.0,1.0) | emissive color of material
Srm real 0.0 specular exponent (range:
0.0, 128.0])
Light Source Parameters
agy; color (0.0,0.0,0.0,1.0) | ambient intensity of light
d.;i(i =0) color | (1.0,1.0,1.0,1.0) | diffuse intensity of lighD
dg;(i > 0) color | (0.0,0.0,0.0,1.0) | diffuse intensity of light
sqi(i = 0) color | (1.0,1.0,1.0,1.0) | specular intensity of light
sai(t > 0) color | (0.0,0.0,0.0,1.0) | specular intensity of light
P position | (0.0,0.0,1.0,0.0) | position of lighti
Sdli direction| (0.0,0.0,—1.0) | direction of spotlight for light
Srli real 0.0 spotlight exponent for lighti
(range:[0.0, 128.0])
Crii real 180.0 spotlight cutoff angle for light
(range:[0.0, 90.0], 180.0)
ko real 1.0 constant attenuation factor for
light i (range:[0.0, c0))
k1; real 0.0 linear attenuation factor fof
light i (range:[0.0, 0))
koj real 0.0 quadratic attenuation factor far
light i (range:[0.0, c0))
Lighting Model Parameters
acs color | (0.2,0.2,0.2,1.0) | ambient color of scene
ths boolean FALSE use two-sided lighting mode

Table 2.8: Summary of lighting parameters. The range oWiddal color compo-

nents is(—oo,

+00).

Version 1.1.10 (DRAFT - March 31, 2007)

2.12. COLORS AND COLORING 40

(Directions are taken to have three coordinatesPqlfandP, are (homogeneous,
with four coordinates) points then I&; P, be the unit vector that points froid,
to P». Note that ifP, has a zerav coordinate and®, has non-zerav coordinate,
thenP, P, is the unit vector corresponding to the direction specifigdhe x, v,
andz coordinates oP,; if P has a zerav coordinate and, has a non-zeraw
coordinate theP; P, is the unit vector that is the negative of that corresponding
to the direction specified b, . If both P, andP» have zeraw coordinates, then
P, P, is the unit vector obtained by normalizing the directionresponding to
Py, — Py. A

If d is an arbitrary direction, then let be the unit vector irl’s direction. Let
|P1P2|| be the distance betwed?, andP,. Finally, letV be the point corre-
sponding to the vertex being lit, andbe the corresponding normal.

Lighting produces a colat. The equation to compuieis

C = e€e¢n
+ acgm *acs
n—1
+ Z (att;)(spot;) [acm * acy
=0 + (n ® Wpli)dcm * dcli

+ (fz)(n © IAli)srmscm * Scli]

where
s - [1 noVBi#o (2.2)
! 0, otherwise,
hy = VPu+(0 0 1)° (2.3)
1 i '
att, koi + il VPl + kail[VP : 2.4)
1.0, otherwise.

Version 1.1.10 (DRAFT - March 31, 2007)

2.12. COLORS AND COLORING 41

(PoiiV © 8a1i)*rti, cppi # 180.0, Py V © 813 > cos(cy;),
spot; = 0.0, cri 7 180.0, Pplig ® Sai < COS(C,«“),(ZB)
1.0, Crl; — 180.0.

All computations are carried out in eye coordinates. Ligiptis computed for a
viewer situated at0, 0, — oo); the OpenGL ES lighting model does not support
a local viewer

The value of A produced by lighting is the alpha value asgediavithd.,,.

Results of lighting are undefined if the, coordinate { in eye coordinates) of
V is zero.

Lighting may operate itwo-sidedmode {,; = TRUE), in which afront color
and aback color are computed using the same material parameterse(thero
way to specify different front and back material parameter®penGL ES), but
replacingn with —n in the case of the back cololf ¢;,, = FALSE, then the back
color and front color are both assigned the color computéthus. "

The selection between back color and front color dependsi@mptimitive of
which the vertex being lit is a part. If the primitive is a pbior a line segment,
the front color is always selected. If it is a polygon, thea fielection is based on
the sign of the (clipped or unclipped) polygon’s signed areaputed in window
coordinates. One way to compute this area is

1l . o
A= Tl T Yo (2.6)
=0

where z!, andy!, are thez andy window coordinates of théth vertex of the
n-vertex polygon (vertices are numbered starting at zer@twposes of this com-
putation) and & 1 is (i + 1) mod n. The interpretation of the sign of this value is
controlled with

voi d FrontFace(enumdir);

Settingdir to CCW(corresponding to counter-clockwise orientation of thejgcted
polygon in window coordinates) indicates thatif< 0, then the color of each
vertex of the polygon becomes the back color computed fdrubeex while if
a > 0, then the front color is selected. dir is CW thena is replaced by-a in the
above inequalities. This requires one bit of state; iritjal indicatesCCW

2.12.2 Lighting Parameter Specification

Lighting parameters are divided into three categories:enwltparameters, light
source parameters, and lighting model parameters (see Za&8)l. Sets of lighting
parameters are specified with

Version 1.1.10 (DRAFT - March 31, 2007)

2.12. COLORS AND COLORING 42

voi d Material {xf}(enumface enumpname T param);
voi d Material {xf}v(enumface enumpname T params);
voi d Light {xf}(enumlight, enumpname T param);

voi d Light {xf}v(enumlight, enumpname T params);
voi d LightModel {xf}(enumpname T param);

voi d LightModel {xf}v(enumpname T params);

pnameis a symbolic constant indicating which parameter is to ke(see Ta-
ble 2.9). In the vector versions of the commanglartamsis a pointer to a group
of values to which to set the indicated parameter. The nuobealues pointed to
depends on the parameter being set. In the non-vector wergiaramis a value

to which to set a single-valued parameter.pgfamcorresponds to a multi-valued
parameter, the errarNVALI D.ENUM results.) For theMaterial command,face
must beFRONT_AND_BACK, indicating that the propertyameof both the front and
back material, should be set. In the casd.ight, light is a symbolic constant of
the formLI GHT:, indicating that lighti is to have the specified parameter set. The
constants obey!l GHT: = LI GHTO + .

Table 2.9 gives, for each of the three parameter groups, dhespondence
between the pre-defined constant names and their names liglitieg equa-
tions, along with the number of values that must be specifigd @ach. Color
parameters specified witilaterial andLight are converted to floating-point val-
ues (if specified as integers) as indicated in Table 2.7 fpred integers. The error
I NVALI D_VALUE occurs if a specified lighting parameter lies outside thevedble
range given in Table 2.8. (The symbak’” indicates the maximum representable
magnitude for the indicated type.)

The current model-view matrix is applied to the positiongraeter indicated
with Light for a particular light source when that position is specifiethese
transformed values are the values used in the lighting exuat

The spotlight direction is transformed when it is specifisthg only the upper
leftmost 3x3 portion of the model-view matrix. That isNi,, is the upper left 3x3
matrix taken from the current model-view matilx, then the spotlight direction

is transformed to

Version 1.1.10 (DRAFT - March 31, 2007)

2.12. COLORS AND COLORING

43

| Parameter]| Name | Number of valueg
Material ParameterdMaterial)
A AVBI ENT 4
derm DI FFUSE 4
aem, dem, AMBI ENT_AND.DI FFUSE 4
Sem SPECULAR 4
€cm EM SSI ON 4
Srm SHI NI NESS 1
Light Source Parameterkight)
ag; ANVBI ENT 4
d.i DI FFUSE 4
Scli SPECULAR 4
P POSI TI ON 4
Sdli SPOT_DI RECTI ON 3
Syli SPOT_EXPONENT 1
Crli SPOT_CUTOFF 1
ko CONSTANT _ATTENUATI ON 1
Ky LI NEAR ATTENUATI ON 1
ko QUADRATI C ATTENUATI ON 1
Lighting Model Parameterd.{ghtModel)
Acs LI GHT_MODEL _AMBI ENT 4
ths LI GHT_MODEL_TWO.SI DE 1

Table 2.9: Co

rrespondence of lighting parameter
AMBI ENT_AND_DI FFUSE is used to se4.,,, andd,,, to the same value.

symbols names.

Version 1.1.10 (DRAFT - March 31, 2007)

2.12. COLORS AND COLORING 44

Anindividual light is enabled or disabled by callikgable or Disablewith the
symbolic valueLl GHT: (i is in the range O ta. — 1, wheren is the implementation-
dependent number of lights). If lightis disabled, theth term in the lighting
equation is effectively removed from the summation.

2.12.3 Color Material Tracking

It is possible to attach the ambient and diffuse materiaperties to the current
color, so that they continuously track its component values

Color material tracking is enabled and disabled by callimgble or Disable
with the symbolic valu€OLOR.MATERI AL. When enabled, both the ambieat.,)
and diffuse {.,,,) properties of both the front and back material are immetiat
set to the value of the current color, and will track changeshe current color
resulting from either th€olor commands or drawing vertex arrays with the color
array enabled.

The replacements made to material properties are permahentplaced val-
ues remain until changed by either sending a new color or tiyigex new material
value whenCOLOR.MATERI AL is not currently enabled, to override that particular
value.

2.12.4 Lighting State

The state required for lighting consists of all of the ligigtiparameters (front and
back material parameters, lighting model parameters, tledst 8 sets of light pa-
rameters), a bit indicating whether a back color distinotrirthe front color should
be computed, at least 8 bits to indicate which lights are ledala bit indicating
whether or nolCOLOR.VATERI AL is enabled, and a single bit to indicate whether
lighting is enabled or disabled. In the initial state, afjhiing parameters have
their default values. Back color evaluation does not takegl and both lighting
andCOLOR MVATERI AL are disabled.

2.12.5 Clamping

After lighting (whether enabled or not), all componentshad tolor are clamped to
the rang€0, 1].

2.12.6 Flatshading

A primitive may beflatshaded meaning that all vertices of the primitive are as-
signed the same color. This color is the color of the vertet §pawned the prim-
itive. For a point, it is the color associated with the poiRbr a line segment, it

Version 1.1.10 (DRAFT - March 31, 2007)

2.12. COLORS AND COLORING 45

| Primitive type of triangle | Vertex |
triangle strip 1+ 2
triangle fan 1+ 2
independent triangle 3i

Table 2.10: Triangle flatshading color selection. The lased for flatshading
the ith triangle generated by the indicated primitimeodeare derived from the
current color (if lighting is disabled) in effect when thalinated vertex is specified.
If lighting is enabled, the colors are produced by lightitng indicated vertex.
Vertices are numberetithroughn, wheren is the number of vertices specified by
the DrawArrays or DrawElementscommand.

is the color of the second (final) vertex of the segment. Fafaagle, it comes
from a selected vertex depending on how the triangle wasrgte Table 2.10
summarizes the possibilities.

Flatshading is controlled by

voi d ShadeMode(enummode);

modevalue must be either of the symbolic consta®t4$OTH or FLAT. If modeis
SMOOTH (the initial state), vertex colors are treated individyalf modeis FLAT,
flatshading is turned orhadeModelthus requires one bit of state.

2.12.7 Color and Texture Coordinate Clipping

After lighting, clamping, and possible flatshading, colars clipped. The color
associated with a vertex that lies within the clip volumenafiected by clipping. If
a primitive is clipped, however, the colors assigned toigestproduced by clipping
are clipped colors.

Let the colors assigned to the two vertid@s andP5 of an unclipped edge be
c1 andc,. The value oft (section 2.11) for a clipped poiR is used to obtain the
color associated witl? as

c=tecy + (1 —t)co.

(Multiplying a color by a scalar means multiplying each of ®, B, and A by
the scalar.) Polygon clipping may create a clipped vertex@lan edge of the
clip volume’s boundary. This situation is handled by notihgt polygon clipping
proceeds by clipping against one plane of the clip volumesridary at a time.
Color clipping is done in the same way, so that clipped paahisays occur at the

Version 1.1.10 (DRAFT - March 31, 2007)

2.12. COLORS AND COLORING 46

intersection of polygon edges (possibly already clippedh whe clip volume’s
boundary.

Texture coordinates must also be clipped when a primitiveligped. The
method is exactly analogous to that used for color clipping.

2.12.8 Final Color Processing

Each color component (which lies [f, 1]) is converted (by rounding to nearest)
to a fixed-point value withn bits. We assume that the fixed-point representation
used represents each valbg2™ — 1), wherek € {0,1,...,2™ — 1}, ask (e.g.
1.0 is represented in binary as a string of all ones)must be at least as large as
the number of bits in the corresponding component of the éfauffer. m must be
at least 2 for A if the framebuffer does not contain an A corgauanor if there is
only 1 bit of A in the framebuffer.

Because a number of the fork/ (2™ — 1) may not be represented exactly as
a limited-precision floating-point quantity, we place atli@r requirement on the
fixed-point conversion of color components. Suppose tigatitig is disabled, the
color associated with a vertex has not been clipped, andlbewas specified with
unsigned byte or integer values. When these conditionsaigfied, an RGBA
component must convert to a value that matches the comp@asespecified in
the command defining it: ifn is less than the number of bitswith which the
component was specified, then the converted value must ggpialost significant
m bits of the specified value; otherwise, the most signifiéarits of the converted
value must equal the specified value.

Version 1.1.10 (DRAFT - March 31, 2007)

Chapter 3

Rasterization

Rasterization is the process by which a primitive is coratb a two-dimensional
image. Each point of this image contains such informatiorasr and depth.
Thus, rasterizing a primitive consists of two parts. Thet fsgo determine which
squares of an integer grid in window coordinates are occlupiethe primitive.
The second is assigning a color and a depth value to each guates The results
of this process are passed on to the next stage of the GLrgmgmént operations),
which uses the information to update the appropriate lonatin the framebuffer.
Figure 3.1 diagrams the rasterization process.

A grid square along with its parameters of assigned colofdepth), and tex-
ture coordinates is called feagment the parameters are collectively dubbed the
fragment'sassociated dataA fragment is located by its lower left corner, which
lies on integer grid coordinates. Rasterization operat@also refer to a fragment’s
center which is offset by(1/2,1/2) from its lower left corner (and so lies on
half-integer coordinates).

Grid squares need not actually be square in the GL. Rasienzailles are not
affected by the actual aspect ratio of the grid squares.|®igif non-square grids,
however, will cause rasterized points and line segmentgppear fatter in one
direction than the other. We assume that fragments are esgsiace it simplifies
antialiasing and texturing.

Several factors affect rasterization. Points may be givifferothg diameters
and line segments differing widths. A point or line segmerynbe antialiased
using pixel coverage values (see section 3.2), but polygdialesing using cov-
erage values is not supported. Multisampling must be useakterize antialiased
polygons (see section 3.2.1)

a7

3.1. INVARIANCE 48

Point

/ Rasterization \
Line -

From
Primitive — se———]
Assembly

Rasterization Texturing

\ Triangle

Rasterization

y

Fog = Fragments

Figure 3.1. Rasterization.

3.1 Invariance

Consider a primitivey’ obtained by translating a primitiyethrough an offsetz, y)

in window coordinates, where andy are integers. As long as neithgrnor p is

clipped, it must be the case that each fragmg&rroduced fronyp’ is identical to
a corresponding fragmerjt from p except that the center ¢f is offset by(z, y)

from the center off.

3.2 Antialiasing

Antialiasing of a point or line is effected as followthe R, G, and B values of the |
rasterized fragment are left unaffected, but the A valueuttiplied by a floating-
point value in the rangp), 1] that describes a fragment’s screen pixel coverage. The
per-fragment stage of the GL can be set up to use the A valdernd the incoming
fragment with the corresponding pixel already present enftamebuffer.

The details of how antialiased fragment coverage values@rguted are dif-
ficult to specify in general. The reason is that high-quadityialiasing may take
into account perceptual issues as well as characteristitgeanonitor on which
the contents of the framebuffer are displayed. Such detaitot be addressed
within the scope of this document. Further, the coveragaevabmputed for a
fragment of some primitive may depend on the primitive’ateinship to a num-
ber of grid squares neighboring the one corresponding t&rélgenent, and not just

Version 1.1.10 (DRAFT - March 31, 2007)

3.2. ANTIALIASING 49

on the fragment’s grid square. Another consideration i$ #itaurate calculation
of coverage values may be computationally expensive; curesaly we allow a
given GL implementation to approximate true coverage \&lmeusing a fast but
not entirely accurate coverage computation.

In light of these considerations, we chose to specify theabieh of exact an-
tialiasing in the prototypical case that each displayeelpix a perfect square of
uniform intensity. The square is calledragment squarand has lower left corner
(z,y) and upper right corngr + 1, y + 1). We recognize that this simple box filter
may not produce the most favorable antialiasing resultsjtharovides a simple,
well-defined model.

A GL implementation may use other methods to perform amassatig, subject
to the following conditions:

1. If f1 andfs are two fragments, and the portion ff covered by some prim-
itive is a subset of the corresponding portionfefcovered by the primitive,
then the coverage computed ffr must be less than or equal to that com-
puted for fs.

2. The coverage computation for a fragmeghinust be local: it may depend
only on f’s relationship to the boundary of the primitive being raiged. It
may not depend olfi's andy coordinates.

Another property that is desirable, but not required, is:

3. The sum of the coverage values for all fragments produgetdierizing a
particular primitive must be constant, independent of dgidrmotions in
window coordinates, as long as none of those fragments lbeg avindow
edges.

In some implementations, varying degrees of antialiasungity may be obtained
by providing GL hints (section 5.2), allowing a user to makeimage quality
versus speed tradeoff.

3.2.1 Multisampling

Multisampling is @ mechanism to antialias all GL primitivgmints, lines, and tri-

angles. The technique is to sample all primitives multipteets at each pixel. The
color sample values are resolved to a single, displayall® each time a pixel

is updated, so the antialiasing appears to be automaticeadplication level.

Because each sample includes color, depth, and stendifriafmn, the color (in-

cluding texture operation), depth, and stencil functioeggrm equivalently to the
single-sample mode.

Version 1.1.10 (DRAFT - March 31, 2007)

3.2. ANTIALIASING 50

An additional buffer, called the multisample buffer, is addo the framebuffer.
Pixel sample values, including color, depth, and stendiles are stored in this
buffer. When the framebuffer includes a multisample byffedoes not include
depth or stencil buffers, even if the multisample buffer slo®t store depth or
stencil values. The color buffer coexists with the multigéerbuffer, however.

Multisample antialiasing is most valuable for renderirigrigles, because it re-
quires no sorting for hidden surface elimination, and itrectly handles adjacent
triangles, object silhouettes, and even intersectinggtis. If only points or lines
are being rendered, the “smooth” antialiasing mechanismiged by the base GL
may result in a higher quality image. This mechanism is dexigo allow multi-
sample and smooth antialiasing techniques to be alterlat@uy the rendering of
a single scene.

If the value of SAMPLE_BUFFERS is one, the rasterization of all primi-
tives is changed, and is referred to as multisample rast@iz Otherwise,
primitive rasterization is referred to as single-samplstegzation. The value
of SAMPLE BUFFERS is queried by callingGetintegerv with pname set to
SAMPLE BUFFERS.

During multisample rendering the contents of a pixel fragimare changed
in two ways. First, each fragment includes a coverage valiie SAMPLES bits.
The value ofSAMPLES is an implementation-dependent constant, and is queried by
calling Getintegerv with pnameset toSAMPLES.

Second, each fragment includgaMPLES depth values, color values, and sets
of texture coordinates, instead of the single depth valo&grovalue, and set of
texture coordinates that is maintained in single-sampidegng mode. An imple-
mentation may choose to assign the same color value and i szt of texture
coordinates to more than one sample. The location for etrafu#he color value
and the set of texture coordinates can be anywhere withipittes including the
fragment center or any of the sample locations. The colarevahd the set of tex-
ture coordinates need not be evaluated at the same loc&taxh pixel fragment
thus consists of integer x and y grid coordinat®sl\/PLES color and depth values,
SAMPLES sets of texture coordinates, and a coverage value with armuemi of
SAMPLES bhits.

Multisample rasterization is enabled or disabled by cgliEmable or Disable
with the symbolic constarNULTI SAMPLE.

If MULTI SAMPLE is disabled, multisample rasterization of all primitives i
equivalent to single-sample (fragment-center) rastgdma except that the frag-
ment coverage value is set to full coverage. The color andhdegdues and the
sets of texture coordinates may all be set to the values tbatdahave been as-
signed by single-sample rasterization, or they may be asdigs described below
for multisample rasterization.

Version 1.1.10 (DRAFT - March 31, 2007)

3.3. POINTS 51

If MULTI SAMPLE is enabled, multisample rasterization of all primitiveEetis
substantially from single-sample rasterization. It is emstibod that each pixel in
the framebuffer haSAMPLES locations associated with it. These locations are
exact positions, rather than regions or areas, and eaclfeisa@ to as a sample
point. The sample points associated with a pixel may be docatside or outside
of the unit square that is considered to bound the pixel. Heamore, the relative
locations of sample points may be identical for each pixehim framebuffer, or
they may differ.

If the sample locations differ per pixel, they should be adid to window, not
screen, boundaries. Otherwise rendering results will bedaiv-position specific.
The invariance requirement described in section 3.1 ixegldor all multisample
rasterization, because the sample locations may be adunatipixel location.

It is not possible to query the actual sample locations okalpi

3.3 Points

The rasterization of points is controlled with

voi d PointSizg f | oat size);
voi d PointSizeX f i xed size);

sizespecifies the requested size of a point. The default valu®isA value less
than or equal to zero results in the errcwWALI D_VALUE.

The requested point size is multiplied with a distance ation factor,
clamped to a point size range specified withintParameter (see below,) and
further clamped to the implementation-dependent poirg singe to produce the
derived point size:

derived_size = impl_clamp <u867“ clamp (size >)
_ -) i Va+bxd+cxd?

whered is the eye-coordinate distance from the €ye(), 0, 1) in eye coordinates,
to the vertex, and, b, andc are distance attenuation function coefficients.

Point sprites are enabled or disabled by calliwable or Disable with the
symbolic constanPO NT_SPRI TE_CES. The default state is for point sprites to be
disabled. When point sprites are enabled, the state of tim gatialiasing enable
is ignored.

The point sprite texture coordinate replacement mode iwitethe commands

voi d TexEnv{ixf}(enumtarget enumpname T param);

Version 1.1.10 (DRAFT - March 31, 2007)

3.3. POINTS 52

voi d TexEnv{ixf}v(enumtarget enumpname T params);

where target i$O NT_SPRI TE_CES and pname i€OORD_REPLACE_CES. The pos-
sible values foparamareFALSE andTRUE. The default value for each texture unit
is for point sprite texture coordinate replacement to baluled.

If multisampling is not enabled, the derived size is passetboasterization as
the point width.

If multisampling is enabled, an implementation may optlgntade the point
alpha (see section 3.10) instead of allowing the point widtigo below a given
threshold. In this case, the width of the rasterized point is

. derived_size derived_size > threshold
width = { threshold otherwise (3.1)
and the fade factor is computed as follows:
p 1 derived_size > threshold 32
= . N2 .
P07 (pmsteate)” otherwise &2

The distance attenuation function coefficiemts, andc, the bounds of the first
point size range clamp, and the point fadeeshold, are specified with

voi d PointParameter{xf}(enumpname T param);
voi d PointParameter{xf}v(enumpname const T params);

If pnameis PO NT_SI ZEM N or PO NT_SI ZE_MAX, then param speci-
fies, or params points to the lower or upper bound respectively to which
the derived point size is clamped. If the lower bound is greahan
the upper bound, the point size after clamping is undefined. pnameis
PO NT_DI STANCE_ATTENUATI ON, then params points to the coefficients, b,
and c¢. If pnameis PO NT_FADE THRESHOLD. SI ZE, then param specifies,
or paramspoints to the point fadehreshold. Values of PO NT_SI ZE_M N,
PO NT_SI ZE_MAX, or PO NT_FADE THRESHOLD SI ZE less than zero result in the
error| NVALI D_VALUE.

Point antialiasing is enabled or disabled by calliwgable or Disable with the
symbolic constanPO NT_SMOOTH. The default state is for point antialiasing to be
disabled.

3.3.1 Basic Point Rasterization

In the default state, a point is rasterized by truncatingeitsandy,, coordinates
(recall that the subscripts indicate that theseaasndy window coordinates) to

Version 1.1.10 (DRAFT - March 31, 2007)

3.3. POINTS 53

integers. This(z,y) address, along with data derived from the data associated
with the vertex corresponding to the point, is sent as a sifrgigment to the per-
fragment stage of the GL.

The effect of a point width other thah(0 depends on the state of point an-
tialiasing and point sprites.

Non-Antialiased Points

If antialiasing and point sprites are disabled, the actualttwis deter-
mined by rounding the supplied width to the nearest integken clamp-
ing it to the implementation-dependent maximum non-aasald point width.
This implementation-dependent value must be no less thainthlementation-
dependent maximum antialiased point width, rounded to dagast integer value,
and in any event no less thanlf rounding the specified width results in the value
0, then it is as if the value werk If the resulting width is odd, then the point

(@.9) = (120] + 55 Lyl + 3)

is computed from the vertex’s,, andy,,, and a square grid of the odd width cen-
tered at(x, y) defines the centers of the rasterized fragments (recalfriqginent
centers lie at half-integer window coordinate values)h# width is even, then the
center point is

(,9) = (12w + 3, Ly + 51
the rasterized fragment centers are the half-integer windoordinate values
within the square of the even width centered(eny). See figure 3.2.

All fragments produced in rasterizing a non-antialiaseahipare assigned the
same associated data, which are those of the vertex condisigato the point, with
texture coordinates, ¢, andr replaced withs/q, t/q, andr/q, respectively. Ifg is
less than or equal to zero, the results are undefined.

Antialiased Points

If antialiasing is enabled and point sprites are disableel) point rasterization
produces a fragment for each fragment square that interdeetegion lying within
the circle having diameter equal to the current point widtll @entered at the
point’s (x,,, y,,) (figure 3.3). The coverage value for each fragment is the avind
coordinate area of the intersection of the circular regiatinvihe corresponding
fragment square (but see section 3.2). This value is saveédised in the final
step of rasterization (section 3.9). Other associated fdateach fragment are
determined in the same fashion as for non-antialiased goint

Version 1.1.10 (DRAFT - March 31, 2007)

3.3. POINTS 54

1

1

r

1

|

1

r

1

1

|

r

1

1

1

r

1

1

1

r

|

1

1
Q-
1

o
6]

1

1
-
1

|

1
-
1

1

|
-
1

1

1
-
1

1

1
-
|

1

1
-
1

i e i e
1

05 15 25 35 45 55 05 15 25 35 45 55

Odd Width Even Width

—

Figure 3.2. Rasterization of non-antialiased wide poifite crosses show fragmen
centers produced by rasterization for any point that liethiwithe shaded region
The dotted grid lines lie on half-integer coordinates.

Not all widths need be supported when point antialiasingnisbait the width
1.0 must be provided. If an unsupported width is requested, #aeast supported
width is used instead. The range of supported widths and ftthwef evenly-
spaced gradations within that range are implementatioertignt. The range and
gradations may be obtained using the query mechanism deddn Chapter 6. If,
for instance, the width range is from 0.1 to 2.0 and the gradawvidth is 0.1, then
the widths0.1,0.2,...,1.9, 2.0 are supported.

Point Sprites

When point sprites are enabled, then point rasterizatiodyres a fragment
for each framebuffer pixel whose center lies inside a squantered at the point’s
(2w, yw), With side length equal to the current point size.

Associated data for each fragment are determined in the skasie
ion as for non-antialiased points. However, for each textunit where
COORD_REPLACE_CES is TRUE, texture coordinates are replaced with point sprite
texture coordinatesThe s coordinate varies from 0 to 1 across the point horizon-
tally left-to-right, while thet coordinate varies from 0 to 1 vertically top-to-bottom.
Ther andq coordinates are replaced with the constants 0 and 1, resglgct

Version 1.1.10 (DRAFT - March 31, 2007)

3.3. POINTS 55

6.0

..

5.0

4.0

3.0

2.0

1.0

Figure 3.3. Rasterization of antialiased wide points. Tllbdot indicates the
point to be rasterized. The shaded region has the specifiéithwirhe X marks
indicate those fragment centers produced by rasterizafidinagment’s computed
coverage value is based on the portion of the shaded regatrcdivers the corre-
sponding fragment square. Solid lines lie on integer comads.

Version 1.1.10 (DRAFT - March 31, 2007)

3.3. POINTS 56

The following formula is used to evaluate th@ndt¢ coordinates:

8:l+l’f+?—$w
2 size

t_l_yf"i_%_yw
2 size

wheresize is the point’s sizeg; andy, are the (integral) window coordinates
of the fragment, and:,, andy,, are the exact, unrounded window coordinates of
the vertex for the point.

The widths supported for point sprites must be a superseiasfet supported
for antialiased points. There is no requirement that theiskh& must be equally
spaced. If an unsupported width is requested, the neanpgbdad width is used
instead.

3.3.2 Point Rasterization State

The state required to control point rasterization consistane floating-point value
specifying the point width, three floating-poivellues specifying the minimum and
maximum point size and the point fade threshold size, thaifig-pointvalues
specifying the distance attenuation coefficients, a bicetthg whether or not an-
tialiasing is enabled, a a bit indicating whether or not psprites are enabled, and
a bit for the point sprite texture coordinate replacementienor each texture unit.

3.3.3 Point Multisample Rasterization

If MULTI SAMPLE is enabled, and the value 8AMPLE BUFFERS is one, then points
are rasterized using the following algorithm, regardlelsalwether point antialias-
ing (PO NT_SMOOTH) is enabled or disabled. Point rasterization producesg fra
ment for each framebuffer pixel with one or more sample othhat intersect a
region centered at the pointis:,,, y,,). This region is a circle having diameter
equal to the current point width fOl NT_SPRI TE_CES is disabled, or a square with
side equal to the current point widthPO NT_SPRI TE_CES is enabled. Coverage
bits that correspond to sample points that intersect themegye 1, other coverage
bits are 0. All data associated with each sample for the feagrare the data as-
sociated with the point being rasterized, with the exceptibtexture coordinates
whenPO NT_SPRI TE_CES is enabled; these texture coordinates are computed as
described in section 3.3.

Point size range and number of gradations are equivalerto®etsupported
for antialiased points wheRO NT_SPRI TE_CES is disabled. The set of point

Version 1.1.10 (DRAFT - March 31, 2007)

3.4. LINE SEGMENTS 57

sizes supported is equivalent to those for point spritebawit multisample when
PO NT_SPRI TE_CES is enabled.

3.4 Line Segments

A line segment results from a line strip line loop, or a series of separate line
segments. Line segment rasterization is controlled byrakvariables. Line width,
which may be set by calling

voi d LineWidth (f | oat width);
voi d LineWidthx (f i xed width);

with an appropriate positive width, controls the width oftexized line segments.
The default width is1.0. Values less than or equal to0 generate the error
| NVALI D_VALUE. Antialiasing is controlled withEnable and Disable using the
symbolic constant! NE_.SMOOTH.

3.4.1 Basic Line Segment Rasterization

Line segment rasterization begins by characterizing tigensat as eithex-major

or y-major. z-major line segments have slope in the closed intepvdl 1]; all
other line segments agemajor (slope is determined by the segment’s endpoints).
We shall specify rasterization only farmajor segments except in cases where the
modifications fory-major segments are not self-evident.

Ideally, the GL uses a “diamond-exit” rule to determine thd®gments that
are produced by rasterizing a line segment. For each fragyfivith center at win-
dow coordinates:; andy , define a diamond-shaped region that is the intersection
of four half planes:

Ry ={(z,y) | |z —wp[+ |y —ys| < 1/2.}

Essentially, a line segment startingmatand ending ap, produces those frag-
mentsf for which the segment intersecis;, except ifp; is contained inZ;. See
figure 3.4.

To avoid difficulties when an endpoint lies on a boundarygfwe (in princi-
ple) perturb the supplied endpoints by a tiny amount. pgaindp, have window
coordinates x,, y,) and(zy, y,), respectively. Obtain the perturbed endpoipfs
given by(zq,ya) — (e, €?) andpj, given by (zp,) — (€, €?). Rasterizing the line
segment starting gi, and ending ap, produces those fragmengsfor which the
segment starting ai;, and ending orp; intersectsk ¢, except ifp; is contained in

Version 1.1.10 (DRAFT - March 31, 2007)

3.4. LINE SEGMENTS 58

Figure 3.4. Visualization of Bresenham'’s algorithm. A pamtof a line segment is
shown. A diamond shaped region of height 1 is placed aroucidfeagment center;
those regions that the line segment exits cause rasteriz@atiproduce correspondt
ing fragments.

Ry. e is chosen to be so small that rasterizing the line segmeniupes the same
fragments wher is substituted foe for any0 < 6 <.

When p, and p, lie on fragment centers, this characterization of fragraent
reduces to Bresenham'’s algorithm with one madificationediproduced in this
description are “half-open,” meaning that the final fragim@orresponding te;)
is not drawn. This means that when rasterizing a series ofaxiad line segments,
shared endpoints will be produced only once rather tharet{és would occur with
Bresenham’s algorithm).

Because the initial and final conditions of the diamond-exé may be difficult
to implement, other line segment rasterization algorittaresallowed, subject to
the following rules:

1. The coordinates of a fragment produced by the algorithiyp moadeviate by
more than one unit in eitheror y window coordinates from a corresponding
fragment produced by the diamond-exit rule.

2. The total number of fragments produced by the algorithny ditier from
that produced by the diamond-exit rule by no more than one.

3. For anz-major line, no two fragments may be produced that lie in tiaes

Version 1.1.10 (DRAFT - March 31, 2007)

3.4. LINE SEGMENTS 59

window-coordinate column (for a-major line, no two fragments may ap-
pear in the same row).

4. If two line segments share a common endpoint, and bothesgtgrare either
x-major (both left-to-right or both right-to-left) ag-major (both bottom-to-
top or both top-to-bottom), then rasterizing both segmemay not produce
duplicate fragments, nor may any fragments be omitted so@ asterrupt
continuity of the connected segments.

Next we must specify how the data associated with each izatiefragment
are obtained. Let the window coordinates of a produced feagroenter be given

by Pr = (xdayd) and letpa = (xaaya) andpb = (!Tb;yb)- Set

(pr - pa) . (pb — pa)

Py —Pall>
(Note thatt = 0 atp, andt = 1 atp,.) The value of an associated datynfor the
fragment, whether it be an R, G, B, or A color component orshg or r texture
coordinate (the depth value, windaswmust be found using equation 3.5, below),
is found as

t= (3.3)

(1 - t)fa/wa + tfb/wb
(1 — t)aa/wa + tab/wb
where f,, and f; are the data associated with the starting and ending endpafin
the segment, respectivelyy, andw;, are the clipw coordinates of the starting
and ending endpoints of the segments, respectively.= «; = 1 for all data
except texture coordinates, in which casg = ¢, anda, = ¢, (g, and g, are
the homogeneous texture coordinates at the starting aridgeeddpoints of the
segment; results are undefined if either of these is lessdhaqual to 0). Note
that linear interpolation would use

f=

(3.4)

f=0=tfa/aa+tfo/ow. (3.5)

The reason that this formula is incorrect (except for thetld@plue) is that it inter-
polates a datum in window space, which may be distorted bspeetive. What is
actually desired is to find the corresponding value whemnrpaiated in clip space,
which equation 3.4 does. A GL implementation may choose poagimate equa-
tion 3.4 with 3.5, but this will normally lead to unacceptlbdistortion effects when
interpolating texture coordinates.

Version 1.1.10 (DRAFT - March 31, 2007)

3.4. LINE SEGMENTS 60

width = 2 width =3

Figure 3.5. Rasterization of non-antialiased wide linesnajor line segments are
shown. The heavy line segment is the one specified to be idethe light seg-
ment is the offset segment used for rasterization. x maréisate the fragment
centers produced by rasterization.

3.4.2 Other Line Segment Features

We have just described the rasterization of non-antiadidise segments of width
one. We now describe the rasterization of line segmentsdoeal values of the
line segment rasterization parameters.

Wide Lines

The actual width of non-antialiased lines is determined daynding the supplied
width to the nearest integer, then clamping it to the impletagon-dependent
maximum non-antialiased line width. This implementatt@pendent value must
be no less than the implementation-dependent maximumlias&d line width,
rounded to the nearest integer value, and in any event ndHasd. If rounding
the specified width results in the valQgthen it is as if the value werk
Non-antialiased line segments of width other than one astemaed by off-
setting them in the minor direction (for artmajor line, the minor direction is
y, and for ay-major line, the minor direction ig) and replicating fragments in
the minor direction (see figure 3.5). Let be the width rounded to the nearest
integer (ifw = 0, then it is as ifw = 1). If the line segment has endpoints

Version 1.1.10 (DRAFT - March 31, 2007)

3.4. LINE SEGMENTS 61

Figure 3.6. The region used in rasterizing and finding cpesling coverage val-
ues for an antialiased line segment (an x-major line segimesttown).

given by (xo,yo) and(z1,y;) in window coordinates, the segment with endpoints
(zo,y0 — (w—1)/2) and(z1,y1 — (w—1)/2) is rasterized, but instead of a single
fragment, a column of fragments of height(a row of fragments of lengtlw for

a y-major segment) is produced at each{y for y-major) location. The lowest
fragment of this column is the fragment that would be produoy rasterizing the
segment of width 1 with the modified coordinates.

Antialiasing

Rasterized antialiased line segments produce fragmentseviiagment squares
intersect a rectangle centered on the line segment. Twaeddhes are parallel to
the specified line segment; each is at a distance of oneHwltfurrent width from
that segment: one above the segment and one below it. Thetathedges pass
through the line endpoints and are perpendicular to thectitine of the specified
line segment. Coverage values are computed for each fragmesomputing the
area of the intersection of the rectangle with the fragmeuoiase (see figure 3.6;
see also section 3.2). Equation 3.4 is used to compute agsdclata values just as
with non-antialiased lines; equation 3.3 is used to find #laesoft for each frag-
ment whose square is intersected by the line segment’snigietaNot all widths
need be supported for line segment antialiasing, but widtlantialiased segments
must be provided. As with the point width, a GL implementatinay be queried
for the range and number of gradations of available ansiatidine widths.

Version 1.1.10 (DRAFT - March 31, 2007)

3.5. POLYGONS 62

3.4.3 Line Rasterization State

The state required for line rasterization consists of thatiihm-point line width and
a bit indicating whether line antialiasing is on or off. Thnitial value of the line
width is 1.0 and the initial state of line segment antialiasing is digdbl

3.4.4 Line Multisample Rasterization

If MULTI SAMPLE is enabled, and the value 8AMPLE_BUFFERS is one, then lines
are rasterized using the following algorithm, regardieastrether line antialiasing
(LI NE_.SMOOTH) is enabled or disabled. Line rasterization produces areag for
each framebuffer pixel with one or more sample points thargect the rectangular
region that is described in th&ntialiasing portion of section 3.4.2 (Other Line
Segment Features).

Coverage bits that correspond to sample points that irdeeseetained rectan-
gle are 1, other coverage bits are 0. Each color, depth, dmd xture coordinates
is produced by substituting the corresponding sample ilmeanto equation 3.3,
then using the result to evaluate equation 3\ implementation may choose to |
assign the same color value and the same set of texture natedito more than
one sample The color value and the set of texture coordinates needeetvalu- "
ated at the same location.

Line width range and number of gradations are equivalenbdsd supported
for antialiased lines.

3.5 Polygons

A polygon results from a triangle strip, triangle fan, orissrof separate trian-
gles. Like points and line segments, polygon rasterizasaontrolled by several
variables.

3.5.1 Basic Polygon Rasterization

The first step of polygon rasterization is to determine if ploé/gon isback facing

or front facing This determination is made by examining the sign of the eosa-
puted by equation 2.6 of section 2.12.1 (including the gdssieversal of this sign
as indicated by the last call terontFace). If this sign is positive, the polygon is
front facing otherwise, it is back facing. This determination is useddnjunction
with the CullFace enable bit and mode value to decide whether or not a particula
polygon is rasterized. TheullFace mode is set by calling

voi d CullFace(enummode);

Version 1.1.10 (DRAFT - March 31, 2007)

3.5. POLYGONS 63

modeis a symbolic constant: one &RONT, BACK or FRONT_AND_BACK. Culling

is enabled or disabled witfEnable or Disable using the symbolic constant
CULL_FACE. Front facing polygons are rasterized if either culling isadbled or
the CullFace mode isBACK while back facing polygons are rasterized only if ei-
ther culling is disabled or th€ullFace mode iSFRONT. The initial setting of the
CullFace mode isBACK. Initially, culling is disabled.

The rule for determining which fragments are produced bygoh rasteriza-
tion is calledpoint sampling The two-dimensional projection obtained by taking
the z and y window coordinates of the polygon’s vertices is formed. ganant
centers that lie inside of this polygon are produced by restéon. Special treat-
ment is given to a fragment whose center lies on a polygon denynedge. In
such a case we require that if two polygons lie on either sfde @dmmon edge
(with identical endpoints) on which a fragment center libgn exactly one of the
polygons results in the production of the fragment durirgjeszation.

As for the data associated with each fragment produced bgriziag a poly-
gon, we begin by specifying how these values are producedrdgments in a
triangle. Definebarycentric coordinate$or a triangle. Barycentric coordinates are
a set of three numbers, b, andc, each in the rang@, 1], witha + b + ¢ = 1.
These coordinates uniquely specify any pgintithin the triangle or on the trian-
gle’s boundary as

p = apq + bpy + cpe,
wherep,, py, @andp,.. are the vertices of the triangle, b, andc can be found as

~ A(ppvpe) - A(ppape) ~ A(ppapy)

A(papope)’ A(papope)’ A(papope)’

whereA (Imn) denotes the area in window coordinates of the triangle wattices
[, m, andn.

Denote a datum at,, py, Of p. @s fa, f», OF f., respectively. Then the valug
of a datum at a fragment produced by rasterizing a triangdgviesn by

o afa/wa + bfb/wb + cfc/wc
aag/w, + bay/wy + co/we

(3.6)

wherew,, w, andw, are the clipw coordinates ofp,, py, andp., respectively.

a, b, andc are the barycentric coordinates of the fragment for whighdhta are
produced.c, = ap = a. = 1 except for textures, ¢, andr coordinates, for which
Qg = Ga, @ = qp, @anda,. = ¢, (if any of ¢4, g, Or g. are less than or equal
to zero, results are undefined), b, andc must correspond precisely to the exact
coordinates of the center of the fragment. Another way ofrgpyhis is that the
data associated with a fragment must be sampled at the fragneenter.

Version 1.1.10 (DRAFT - March 31, 2007)

3.5. POLYGONS 64

Just as with line segment rasterization, equation 3.6 mappeoximated by

= afa/aa + bfb/ab + Cfc/ac§

this may vyield acceptable results for color valuesnfitstbe used for depth val-
ues), but will normally lead to unacceptable distortioreet$ if used for texture
coordinates.

3.5.2 Depth Offset

The depth values of all fragments generated by the rastienzaf a polygon may
be offset by a single value that is computed for that polygdhe function that
determines this value is specified by calling

voi d PolygonOffse(f | oat factor, fl oat units);
voi d PolygonOffsety f i xed factor, fi xed units);

factor scales the maximum depth slope of the polygon, anitls scales an im-
plementation dependent constant that relates to the ussgnéution of the depth
buffer. The resulting values are summed to produce the palydfset value. Both
factor andunitsmay be either positive or negative.

The maximum depth slope of a triangle is

m= () (52) @7

where(xy,, Yy, 2w) IS @ point on the trianglen may be approximated as

P

0y,

Oz

. } . (3.8)

m:max{ ,

The minimum resolvable difference is an implementation-dependent con-
stant It is the smallest difference in window coordinat®alues that is guaranteed
to remain distinct throughout polygon rasterization andhie depth buffer. All
pairs of fragments generated by the rasterization of twggmis with otherwise
identical vertices, but,, values that differ by-, will have distinct depth values.

The offset value for a polygon is

o=mx* factor + r *x units. (3.9)

Version 1.1.10 (DRAFT - March 31, 2007)

3.6. PIXEL RECTANGLES 65

m is computed as described above, as a function of depth vialties range [0,1],
ando is applied to depth values in the same range.

Boolean state valueOLYGON OFFSET _FI LL determines whether is applied
during the rasterization of polygons. This boolean stataevés enabled and dis-
abled using the command@nable andDisable If POLYGON.OFFSET_FI LL is en-
abled,o is added to the depth value of each fragment produced by sherization
of a polygon.

Fragment depth values are always limited to the range [Bithler by clamping
after offset addition is performed (preferred), or by clangpthe vertex values used
in the rasterization of the polygon.

3.5.3 Polygon Multisample Rasterization

If MULTI SAMPLE is enabled and the value BAMPLE_BUFFERS is one, then poly-
gons are rasterized using the following algorithm. Polygasterization produces
a fragment for each framebuffer pixel with one or more sanmalieits that satisfy
the point sampling criteria described in section 3.5.1luding the special treat-
ment for sample points that lie on a polygon boundary edge plilygon is culled,
based on its orientation and ti@&ullFace mode, then no fragments are produced
during rasterization.

Coverage bits that correspond to sample points that satisfypoint sampling
criteria are 1, other coverage bits are 0. Each color, degpitl,set of texture co-
ordinates is produced by substituting the correspondimgpga location into the
barycentric equations described in section 3.5.1, usingtan 3.6 or its approx-
imation that omitsw components An implementation may choose to assign the
same color value and the same set of texture coordinates retiman one sample
by barycentric evaluation using any location withthe pixel including the frag-
ment center or one of the sample locations. The color valdetaa set of texture
coordinates need not be evaluated at the same location.

3.5.4 Polygon Rasterization State

The state required for polygon rasterization consistste factor and bias values
of the polygon offset equation.The initial polygon offset factor and bias values
are both 0; initially polygon offset is disabled.

3.6 Pixel Rectangles

Rectangles of color values may be specified to the GL usexmage2D and
related commands described in section 3.7.1. Some of tlzaneders and opera-

Version 1.1.10 (DRAFT - March 31, 2007)

3.6. PIXEL RECTANGLES 66

| Parameter Name | Type | Initial Value | Valid Range]
| UNPACK_ALI GNVENT | integer | 4 | 1248 |

Table 3.1:PixelStore parameters pertaining to one or moreTeximage2D, and
TexSublmage2D

tions governing the operation deximage2Dare shared byReadPixels(used to
obtain pixel values from the framebuffer); the discussibiReadPixels however,
is deferred until section 4.3, after the framebuffer hasnbéiscussed in detail.
Nevertheless, we note in this section when parameters atelstrtaining tdex-
Image2Dalso pertain tdiReadPixels

This section describes only how these rectangles are defiraignt memory,
and the steps involved in transferring pixel rectanglesnfidient memory to the
GL or vice-versa.

Parameters controlling the encoding of pixels in client mmgm(for reading
and writing) are set with the commaiRixelStorei.

3.6.1 Pixel Storage Modes

Pixel storage modes affect the operatiormekimage2DandReadPixels(as well
as other commands; see section 3.7) when one of these comaiisdssued. Pixel
storage modes are set with the command

voi d PixelStorei enumpname T param);

pnameis a symbolic constant indicating a parameter to be set,panadmis the
value to set it to. Table 3.1 summarizes the pixel storagarpaters, their types,
their initial values, and their allowable ranges. Settingaeameter to a value out-
side the given range results in the errédvALI D.VAL UE.

3.6.2 Transfer of Pixel Rectangles

The process of transferring pixels encoded in host memorthéoGL is dia-
grammed in figure 3.7. We describe the stages of this prondbke iorder in which
they occur.

Commands accepting or returning pixel rectangles take ¢hewiing argu-
ments (as well as additional arguments specific to theirtfong

formatis a symbolic constant indicating what the values in memepyasent.

width andheightare the width and height, respectively, of the pixel reckang
to be drawn.

Version 1.1.10 (DRAFT - March 31, 2007)

3.6. PIXEL RECTANGLES 67

byte, short, or packed
pixel component data stream |
y

Unpack
c . Pixel Storage
onvert to oat Operatlons
IConvert L to RGB
! Final
Clamp to [0,1] Ina .
Conversion

RGBA pixel data outl

Figure 3.7. Transfer of pixel rectangles to the GL. OutpiRGBA pixels.

datais a pointer to the data to be drawn. These data are represettteone
of two GL data types, specified ltype The correspondence between the fiype
token values and the GL data types they indicate is giverbie &.2.

Unpacking

Data are taken from host memory as a sequence of unsignes dytensigned
shorts (GL data typesbyt e andushort). These elements are grouped into
sets of one, two, three, or four values, depending orfah@at to form a group.
Table 3.3 summarizes the format of groups obtained from nmgmo

The values of each GL data type are interpreted as they waukpécified in
the language of the client's GL binding.

Not all combinations oformatandtypeare valid. The combinations accepted
by the GL are defined in table 3.4. Additional restrictionsynie imposed by
specific commands.

The groups in memory are treated as being arranged in a gletahhis rect-
angle consists of a seriesmofvs, with the first element of the first group of the first
row pointed to by thelatapointer passed tdeximage2D The number of groups
in a row iswidth; If p indicates the location in memory of the first element of the

Version 1.1.10 (DRAFT - March 31, 2007)

3.6. PIXEL RECTANGLES 68

typeParameter Corresponding Special
Token Name GL Data Type| Interpretation
UNSI GNED_BYTE ubyt e No

UNSI GNED_SHORT 565 ushort Yes

UNSI GNED.SHORT 4.4 4 4 ushort Yes

UNSI GNED.SHORT 5.5 5.1 ushort Yes

Table 3.2: Teximage2D and ReadPixelstype parameter values and the corre-
sponding GL data types. Refer to table 2.2 for definitions bftiata types. Special
interpretations are described near the end of section.Fx@&dPixelsaccepts only

a subset of these types (see section 4.3.1)

Format Name | Element Meaning and OrdgrTarget Buffer |
ALPHA A Color
RGB R,G,B Color
RGBA R,G,B,A Color
LUM NANCE Luminance Color
LUM NANCE_ALPHA Luminance, A Color

Table 3.3:Teximage2DandReadPixelsformats. The second column gives a de-
scription of and the number and order of elements in a gr&gadPixelsaccepts
only a subset of these formats (see section 4.3.1)

| Format | Type | Bytes per Pixel
RGBA UNSI GNED_BYTE 4
RGB UNSI GNED_BYTE 3
RGBA UNSI GNED_SHORT 4 _4_4_4 2
RGBA UNSI GNED_.SHORT 5.5.5_1 2
RGB UNSI GNED_SHORT_5_6_5 2
LUM NANCE_ALPHA | UNSI GNED_BYTE 2
LUM NANCE UNSI GNED_BYTE 1
ALPHA UNSI GNED_BYTE 1

Table 3.4: Valid pixel format and type combinations.

Version 1.1.10 (DRAFT - March 31, 2007)

3.6. PIXEL RECTANGLES 69

typeParameter GL Data| Number of Matching
Token Name Type | Components Pixel Formats
UNSI GNED_SHORT 565 ushort 3 RGB

UNSI GNED_SHORT 4 4 4 4 || ushort 4 RCGBA
UNSI GNED_SHORT 5.5.5_1 || ushort 4 RGBA

Table 3.5: Packed pixel formats.

first row, then the first element of th€th row is indicated by

p+ Nk (3.10)

whereN is the row number (counting from zero) akds defined as

nl s> a,
k= { a/s[snl/a] s<a (3.11)

wheren is the number of elements in a groupis the number of groups in
the row, a is the value ofUNPACK_ALI GNVENT, ands is the size, in units of GL
ubyt es, of an element. If the number of bits per element isin@ 4, or 8 times
the number of bits in a Gubyt e, thenk = nl for all values ofa.

A type of UNSI GNED.SHORT.5.6.5, UNSI GNED.SHORT 4444, or
UNSI GNED_.SHORT 5.5.5_.1 is a special case in which all the components of
each group are packed into a single unsigned short. The nuohls®mponents
per packed pixel is fixed by the type, and must match the numbeomponents
per group indicated by théormat parameter, as listed in table 3.5. The error
| NVALI D_.OPERATI ON is generated if a mismatch occurs. This constraint also
holds for all other functions that accept or return pixeladasingtype andformat
parameters to define the type and format of that data.

Bitfield locations of the first, second, third, and fourth qmments of each
packed pixel type are illustrated in table 3.6. Each bitfislthterpreted as an un-
signed integer value. If the base GL type is supported withertftan the minimum
precision (e.g. a 9-bit byte) the packed components aré-jighified in the pixel.

Components are packed with the first component in the mostfisignt bits
of the bitfield, and successive component occupying pregrely less significant
locations. The most significant bit of each component is eddk the most signif-
icant bit location of its location in the bitfield.

Version 1.1.10 (DRAFT - March 31, 2007)

3.6. PIXEL RECTANGLES 70

UNSI GNED_SHORT _5_6_5:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSI GNED_SHORT 4.4 4 _4:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSI GNED_SHORT_ 5.5.5_1:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component ‘ 2nd ‘ 3rd ‘ 4th ‘

Table 3.6:UNSI GNED_SHORT formats

Version 1.1.10 (DRAFT - March 31, 2007)

3.6. PIXEL RECTANGLES

Format First Second Third Fourth
Component| Component, Component| Component

RGB red green blue

RGBA red green blue alpha

71

Table 3.7: Packed pixel field assignments.

The assignment of component to fields in the packed pixel deasribed in
table 3.7

The above discussions of row length and image extractionadie for packed
pixels, if “group” is substituted for “component” and thember of components
per group is understood to be one.

Conversion to floating-point

Each element in a group is converted to a floating-point vaterding to the ap-
propriate formula in table 2.7 (section 2.12). For packeetliypes, each element
in the group is converted by computing (2" — 1), wherec is the unsigned inte-
ger value of the bitfield containing the element asids the number of bits in the
bitfield.

Conversion to RGB

This step is applied only if theormatis LUM NANCE or LUM NANCE_ALPHA. If the
formatis LUM NANCE, then each group of one element is converted to a group of
R, G, and B (three) elements by copying the original singéeneint into each of
the three new elements. If tHermatis LUM NANCE ALPHA, then each group of
two elements is converted to a group of R, G, B, and A (founnelets by copying

the first original element into each of the first three new &pta and copying the
second original element to the A (fourth) new element.

Final Expansion to RGBA

Each group is converted to a group of 4 elements as followa:gifoup does not
contain an A element, then A is added and setto 1.0. If any &Ry B is missing
from the group, each missing element is added and assignadeaf 0.0.

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 72

3.7 Texturing

Texturing maps a portion of one or more specified images cath erimitive for

which texturing is enabled. This mapping is accomplishedising the color of
an image at the location indicated by a fragme(¢'s) coordinates to modify the
fragment’s RGBA color.

An implementation may support texturing using more thaniorege at a time.
In this case the fragment carries multiple sets of textu@dioates(s, t) which
are used to index separate images to produce color valuehahé collectively
used to modify the fragment's RGBA color. The following sebsons (up to
and including section 3.7.7) specify the GL operation withirsgle texture and
section 3.7.13 specifies the details of how multiple textuniés interact.

The GL provides a means to specify the details of how texguoiira primitive
is effected. These details include specification of the enagoe texture mapped,
the means by which the image is filtered when applied to thaipve, and the
function that determines what RGBA value is produced giveagment color and
an image value.

3.7.1 Texture Image Specification
The command

voi d Texlmage2 enumtarget i nt level
i nt internalformat si zei width, si zei height
i nt border, enumformat enumtype voi d *data);

is used to specify dexture imagetargetmust beTEXTURE_2D. format, type and
data specify the format of the image data, the type of those daihagpointer to
the image data in host memory, as described in section 3.6.2.

The groups in memory are treated as being arranged in a gdetarhe rectan-
gle is animage, whose size and organization are specified bwitith andheight
parameters tdeximage2D

The selected groups are processed as described in se&i@ns3opping after
final expansion to RGBA. Each R, G, B, or A value so generatedaisiped to
[0, 1].

Components are then selected from the resulting R, G, B, @léesg to obtain
a texture with thebase internal formaspecified byinternalformaf which must
matchformat no conversions between formats are supported during resxto-
age processing. Table 3.8 summarizes the mapping of R, G, B, and A values to

When a non-RGBAormatandinternalformatare specified, implementations are not required to
actually create and then discard unnecessary R, G, B, or Aocoents. The abstract model defined

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 73

| Base Internal Format RGBA | Internal Components

ALPHA A A

LUM NANCE R L

LUM NANCE.ALPHA | RA L,A
RGB R,G,B R,G,B
RGBA R,G,B,A| R,G,B,A

Table 3.8: Conversion from RGBA pixel components to intetesture compo-
nents. See section 3.7.12 for a description of the textungpomentsrk, G, B, A,
andL.

texture components, as a function of the base internal fooftiae texture image.
internalformatmay be one of the five internal format symbolic constantedish
table 3.8. Specifying a value famternalformatthat is not one of the above values
generates the errdmNVALI D VALUE. If internalformatdoes not matcformat, the
errorl NVALI D.OPERATI ONis generated.

The GL stores the resulting texture with internal comporresolutions of its
own choosing. The allocation of internal component resmtutnay vary based
on anyTexlmage2D parameter (exceparged, but the allocation must not be a
function of any other state and cannot be changed once issiadbl Allocation
must be invariant; the same allocation must be chosen eaehatitexture image is
specified with the same parameter values.

The image itself (pointed to bgata) is a sequence of groups of values. The
first group is the lower left corner of the texture image. Sadueent groups fill
out rows of widthwidth from left to right; heightrows are stacked from bottom
to top forming theimage. When the final R, G, B, and A components have been
computed for a group, they are assigned to componentsexedas described by
table 3.8. Counting from zero, each resultiNgh texel is assigned internal integer
coordinateg(, j), where

i = (N mod width)

j= (LwidthJ mod height)
Thus the last row of themage is indexed with the highest valuejof

Each color component is converted (by rounding to nearess) fixed-point
value withn bits, wheren is the number of bits of storage allocated to that com-
ponent in the image array. We assume that the fixed-poineseptation used

by section 3.6.2 is used only for consistency and ease ofigéea.

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 74

represents each valug/(2" — 1), wherek € {0,1,...,2" — 1}, ask (e.g. 1.0is
represented in binary as a string of all ones).

Thelevelargument tafexlimage2Dis an integetevel-of-detailnumber. Levels
of detail are discussed below, unddipmapping. The main texture image has a
level of detail number of 0. If a level-of-detail less thamaes specified, the error
| NVALI D_VALUE is generated.

If the border argument to Texlmage2D is not zero, then the error
I NVALI D_VALUE is generated.

For non-zerowidth andheight it must be the case that

ws = 2" (3.12)

hy = 2™ (3.13)

for some integers: and m, wherew, and h, are the specified imageidth
and height If any one of these relationships cannot be satisfied, theretror
I NVALI D_VALUE is generated.

An image with zero width or height indicates the null textufeéhe null texture
is specified for level-of-detail zero, it is as if texturingere disabled.

The maximum allowable width and height of a texture image tnies at
least 2% for image arrays of leveD through k, wherek is the log base 2 of
MAX_TEXTURE_SI ZE.

An implementation may allow an image array of level 0 to beatad only if
that single image array can be supported. Additional caimgs on the creation of
image arrays of level 1 or greater are described in moreldetaection 3.7.9.

The image indicated to the GL by the image pointer is decodédapied into
the GL’s internal memory.

We shall refer to the decoded image as tivdure array A texture array has
width and height

wt:2”
hy =2

wheren andm are defined in equations 3.12 and 3.13.

An element(i, j) of the texture array is calledtaxel Thetexture valueused in
texturing a fragment is determined by that fragment’s ass$ed (s, t) coordinates,
but does not necessarily correspond to any actual.t&es figure 3.8.

If the data argument ofTeximage2Dis a null pointer (a zero-valued pointer
in the C implementation), a texture array is created withsppecifiedtarget level
internalformat width, and height but with unspecified image contents. In this

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 75

1.0 4.0
3
o
g I
t v j
1 y B
0
0.0 0.0
0 1 2 3 ; 4 5 6 7
0.0 <= u » 8.0
0.0 = S » 1.0

Figure 3.8. A texture image and the coordinates used to adcekhis is atexture
with n = 3 andm = 2. o« and3, values used in blending adjacent texels to obtai
texture value, are also shown.

na

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 76

case no pixel values are accessed in client memory, and mb pigcessing is
performed. Errors are generated, however, exactly as ththegatapointer were
valid.

3.7.2 Alternate Texture Image Specification Commands

Texture images may also be specified using image data takectlgifrom the
framebuffer, and rectangular subregions of existing texionages may be respec-
ified.

The command

voi d CopyTeximage2d enumtarget i nt level
enuminternalformat i nt x, i nt y, si zei width,
si zei height i nt border);

defines atexture array in exactly the mannefefimage2D except that the image
data are taken from the framebuffer rather than from clieetrmory. target must
be TEXTURE_2D, X, Yy, width, andheightcorrespond precisely to the corresponding
arguments tdreadPixels(refer to section 4.3.1); they specify the image/<h
and height and the lower leftz, y) coordinates of the framebuffer region to be
copied. The image is taken from the color buffer of the fraoffely exactly as
if these arguments were passedReadPixelswith argumentormat set toRGBA,
stopping after conversion of RGBA values. Subsequent griag is identical to
that described folfeximage2D beginning with clamping of the R, G, B, and A
values from the resulting pixel groups. Parameteve| internalformat andbor-
der are specified using the same values, with the same meanstige aquivalent
arguments offexlmage2D internalformatis further constrained such that color
buffer components can be dropped during the conversianténalformat but
new components cannot be added. For example, an RGB cofer bah be used
to createLUM NANCE or RGB textures, but noALPHA, LUM NANCE_ALPHA, or
RGBA textures. Table 3.9 summarizes the allowable framebufidriease internal
format combinations. If the framebuffer format is not corilpla with the base tex-
ture format, an NVALI D_OPERATI ONerror is generated. The constraintsweialth,
height andborderare exactly those for the equivalent argument$eximage2D
Two additional commands,

voi d TexSublmage2lj enumtarget, i nt level i nt xoffset

i nt yoffsef si zei width, si zei height enumformat,
enumtype voi d *data);

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 77

\ \ Texture Format
Color Buffer | A | L | LA | RGB | RGBA
v

A N — —
L v =1 = -
LA v = =
RGB v =1 v =
RGBA SV 7 v

Table 3.9:CopyTeximageinternal format/color buffer combinations.

voi d CopyTexSublmage2 enumtarget i nt level
i nt xoffsef i nt yoffset i nt x, i nt y, si zei width,
si zei height);

respecify only a rectangular subregion of an existing textrray. No change

is made to thanternalformat width, or height parameters of the specified tex-
ture array, nor is any change made to texel values outsidesgheified subre-
gion. Thetargetarguments offexSublmage2DandCopyTexSublmage2Dmust

be TEXTURE_2D. Thelevel parameter of each command specifies the level of the
texture array that is modified. lévelis less than zero or greater than the base 2
logarithm of the maximum texture width or height, the errdivVALI D_VALUE is
generated.

TexSublmage2Dargumentswidth, height format, type anddata match the
corresponding arguments f@xImage2D, meaning that they are specified using
the same values, and have the same meanings.

CopyTexSublmage2Dargumentsx, y, width, and height match the corre-
sponding arguments ©opyTexlmage2D Each of theTexSublmagecommands
interprets and processes pixel groups in exactly the maofriesr TexImage coun-
terpart, except that the assignment of R, G, B, angiXel group values to the
texture components is controlled by thrgernalformat of the texture array, not
by an argument to the command. The same constraints and eqpply to the
TexSublmagecommands’ argumerfbrmatand theinternalformatof the texture
array being respecified as apply to fieematandinternalformatarguments of its
Texlmage counterparts.

Argumentsxoffsetandyoffsetof TexSublmage2DandCopyTexSublmage2D
specify the lower left texel coordinates ofnadth-wide byheighthigh rectangular
subregion of the texture array, address as in figure 3.8. nflaki and i, to be
the specified width and height of the texture array, and takiny, w, andh to
be thexoffset yoffset width, and heightargument values, any of the following

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 78

relationships generates the ertowALI D_VALUE:

z <0
T+ w > wg
y <0
y—+h > hg

Counting from zero, theth pixel group is assigned to the texel with internal integer
coordinatedi, j|, where

i =x + (n mod w)

j=y+ () mod)

3.7.3 Compressed Texture Images

Texture images may also be specified or modified using imaigeali@ady stored
in a known compressed image format. The GL defines some sped-
pressed formats, and others may be defined by GL extensidmexeTs a mech-
anism to obtain token values for compressed formats; thebeurof specific
compressed internal formats supported can be obtained égyigg the value
of NUM.COVPRESSED_TEXTURE_FORMATS. The set of specific compressed inter-
nal formats supported by the renderer can be obtained byyiqgethe value
of COVPRESSED_TEXTURE_FORVATS. The only values returned by this query are
those corresponding timternalformatparameters accepted IompressedTex-
Image2Dand suitable for general-purpose usage. The renderer gti#mumerate
formats with restrictions that need to be specifically ustiayd prior to use.

The command

voi d CompressedTeximage2Denumtarget i nt level
enuminternalformat si zei width, si zei height
i nt border, si zei imageSize voi d *data);

defines atexture image, with incoming data stored in a specific cosged image
format. Thetarget, level internalformat width, height andborder parameters
have the same meaning asTieximage2D datapoints to compressed image data
stored in the compressed image format correspondimgtéonalformat

For all compressed internal formats, the compressed imétjeandecoded ac-
cording to the definition ointernalformat Compressed texture images are treated
as an array oimageSizelbyt es beginning at addreskata All pixel storage and

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 79

pixel transfer modes are ignored when decoding a compreeggede image. If the
imageSizearameter is not consistent with the format, dimensiond,camtents of
the compressed image, ANVALI D_VALUE error results. If the compressed image
is not encoded according to the defined image format, thdtsesuthe call are
undefined.

Specific compressed internal formats may impose formatispeestrictions
on the use of the compressed image specification calls omedeas. For example,
the compressed image format might not allewdth or heightvalues that are not a
multiple of 4. Any such restrictions will be documented i #xtension specifica-
tion defining the compressed internal format; violatingstheestrictions will result
in anl NVALI D_OPERATI ONerror.

Any restrictions imposed by specific compressed internahéds will be in-
variant with respect to image contents, meaning that if theaGcepts and stores
a texture image in compressed for@pmpressedTexlmage2Dwill accept any
properly encoded compressed texture image of the same,wigltht, compressed
image size, and compressed internal format for storageeagaime texture level.

The specific compressed texture formats supportedCbgnpressedTexim-
age2D and the corresponding base internal format for each spdoifimat, are
defined in table 3.10.

| Compressed Texture FormatBase Internal Formalt

PALETTEA_RGB8_OES RGB
PALETTEA_RGBA8_CES RGBA
PALETTE4A_R5_G6_B5_OES RGB
PALETTE4_RGBA4 _OES RGBA
PALETTE4_RGB5_A1_CES RGBA
PALETTE8_RGB8_CES RGB
PALETTE8_RGBA8_CES RGBA
PALETTES8_R5_G5_B5_CES RGB
PALETTE8_RGBA4 _CES RGBA
PALETTES8_RGB5_A1_CES RGBA

Table 3.10: Specific compressed texture formats.

Respecifying Subimages of Compressed Textures

The command I

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 80

voi d CompressedTexSublmage2DPenumtarget i nt level
i nt xoffsef i nt yoffsef si zei width, si zei height
enumformat si zei imageSize voi d *data);

respecifies only a rectangular region of an existing texturay, with incoming
data stored in a known compressed image format.taitget level xoffset yoffset
width, height andformat parameters have the same meaning a$exSublm-
age2D datapoints to compressed image data stored in the compressee ifoa
mat corresponding ttormat

The image pointed to bgata and theimageSizgparameter is interpreted as
though it was provided t€ompressedTexlmage2DThis command does not pro-
vide for image format conversion, so aNVALI D_.OPERATI ON error results iffor-
matdoes not match the internal format of the texture image beindified. If the
imageSizeparameter is not consistent with the format, dimensiond, @antents
of the compressed image (too little or too much data)| BWALI D_VALUE error
results.

As with CompressedTexImagecalls, compressed internal formats may have
additional restrictions on the use of the compressed impgeification calls or
parameters. Any such restrictions will be documented insihecification defin-
ing the compressed internal format; violating these refsnms will result in an
I NVALI D_.OPERATI ON error.

Any restrictions imposed by specific compressed internahéds will be in-
variant with respect to image contents, meaning that if theGepts and stores a
texture image in compressed for@pmpressedTexSublmage2vill accept any
properly encoded compressed texture image of the same,igigiht, compressed
image size, and compressed internal format for storageeatdme texture level.

Calling CompressedTexSublmage2vill result in anl NVALI D.OPERATI ON
error if xoffsetor yoffsetis not equal to zero, or #Wvidth andheightdo not match
the width and height of the texture, respectivelfhe contents of any texel outside
the region modified by the call are undefined. These regristimay be relaxed
for specific compressed internal formats whose images aily eaodified.

3.7.4 Compressed Paletted Textures

If internalformatis PALETTE4_RGB8, PALETTE4_RGBAS, PALETTE4_R5_G6_B5,
PALETTE4_RGBA4, PALETTE4_RGB5_Al, PALETTES8_RGB8, PALETTES_RGBAS,
PALETTES8_R5_G5_B5, PALETTES8_RGBA4, or PALETTES8_RGB5_A1, the com-
pressed texture is a compressed paletted textdega contains the palette data
followed by the mipmap leveJsvhere the number of mipmap levels stored is given

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 81

by |level| + 1. The number of bits that represent a texel is 4 biigtiérnalformat
is PALETTE4 * and is 8 bits ifinternalformatis PALETTES .

The palette data is formatted as an image containing 16°P@0ETTE4 +) or
256 (for PALETTES) palette entries (pixels). The equivaldotmat andtype of
each palette entry is shown in table 3.11.

Compressed Texture FormatPalette entry| Palette entry

format type
PALETTE4_RGBS_CES RGB UNSI GNED_.BYTE
PALETTE4_RGBA8S_CES RGBA UNSI GNED_.BYTE
PALETTE4_R5_G6_B5_CES RGB UNSI GNED_SHORT_5_6_5
PALETTE4_RGBA4_CES RGBA UNSI GNED_SHORT 4444
PALETTE4_RGB5_A1_CES RGBA UNSI GNED_SHORT 5.5.5_1
PALETTE8_RGB8_CES RGB UNSI GNED_BYTE
PALETTES8_RGBAS_CES RGBA UNSI GNED_.BYTE
PALETTE8_R5_G6_B5_CES RGB UNSI GNED_SHORT 5.6_5
PALETTES8_RGBA4_CES RGBA UNSI GNED_SHORT 4.4 4 4
PALETTE8_RGB5_A1_CES RGBA UNSI GNED_SHORT 5.5 5_1

Table 3.11: Palette entry pixel formats.

Image data immediately follows the palette image. Each rapmevel im-
age present in the image data immediately follows the pusvievel, starting
with mipmap level zero and proceeding through the numbeewéls defined by
|level| + 1. Texels within each mipmap level image are formatted as shiow
table 3.12 and are packed contiguously starting at the Itefter

PALETTEA = :

7 6 5 4 3 2 1 0

1st texel 2nd texel

PALETTES *:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 131211109 8 7 6 5 4 3 2 1 0

‘ 1st texel ‘ 2nd ‘ 3rd ‘ 4th

Table 3.12: Texel data formats for compressed palettedrext

If a compressed paletted texture is specified with a podigvel argument to

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 82

| Name | Type | Legal Values |
TEXTURE_WRAP_S integer | CLAMP_TO.EDGE, REPEAT
TEXTUREMRAP_T integer | CLAMP_TO.EDGE, REPEAT
TEXTUREM NLFI LTER | integer | NEAREST,
LI NEAR,

NEAREST_M PVAP_NEAREST,
NEAREST_M PVAP_LI NEAR,
LI NEARM PMAP_NEAREST,
LI NEARM PMAP_LI NEAR,
TEXTURE MAGFI LTER | integer | NEAREST,

LI NEAR

GENERATE_M PNVAP boolean| TRUE or FALSE

Table 3.13: Texture parameters and their values.

TexIimage2D anl NVALI D_VALUE error is generated.

Subimages may not be specified for compressed palettedréextiCalling
CompressedTexSublmage2vith any of thePALETTE+ arguments in table 3.11
will generate an NVALI D.OPERATI ON error.

3.7.5 Texture Parameters

Various parameters control how the texture array is treatben specified or
changed, and when applied to a fragment. Each parametérly salling

voi d TexParameter{ixf }(enumtarget enumpname
T param);

voi d TexParameter{ixf }v(enumtarget enumpname
T params);

targetis the target, which must BEEXTURE_2D. pnamds a symbolic constant indi-
cating the parameter to be set; the possible constants ams$ponding parameters
are summarized in table 3.13. In the first form of the commagadamis a value
to which to set a single-valued parameter; in the second fafrthe command,
paramsis an array of parameters whose type depends on the paraeatgrset.

If the value of texture paramet@ENERATE_M PMAP is TRUE, specifying or
changing texture arrays may have side effects, which amustied in théluto-
matic Mipmap Generation discussion of section 3.7.7.

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 83

3.7.6 Texture Wrap Modes

Wrap modes defined by the valuesTEXTURE_WRAP_S or TEXTURE_WRAP_T re-
spectively affect the interpretation sindt texture coordinates. The effect of each
mode is described below.

Wrap Mode REPEAT

Wrap modeREPEAT ignores the integer part of texture coordinates, using tmdy
fractional part. (For a numbef, the fractional part isf — | f|, regardless of the
sign of f; recall that thel | function truncates towardscc.)

REPEAT is the default behavior for all texture coordinates.

Wrap Mode CLAMP_TO.EDGE

Wrap modeCLAMP_TO.EDGE clamps texture coordinates at all mipmap levels such
that the texture filter never samples outside the textureyénd he color returned
when clamping is derived only from texels at the edge of tkeute image.

Texture coordinates are clamped to the rapgén, maz|. The minimum value
is defined as

1
2N
where N is the size of the texture image in the direction of clampifige maxi-
mum value is defined as

min =

maxr =1 — min

so that clamping is always symmetric about fiel] mapped range of a texture
coordinate.

3.7.7 Texture Minification

Applying a texture to a primitive implies a mapping from tepd image space to
framebuffer image space. In general, this mapping involveésconstruction of
the sampled texture image, followed by a homogeneous waiipiplied by the
mapping to framebuffer space, then a filtering, followed Ifinay a resampling
of the filtered, warped, reconstructed image before apglyirio a fragment. In
the GL this mapping is approximated by one of two simple fitigischemes. One
of these schemes is selected based on whether the mappingeikture space to
framebuffer space is deemedrt@agnifyor minify the texture image.

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 84

Scale Factor and Level of Detail

The choice is governed by a scale factdx, y) and thelevel of detailparameter
Az, y), defined as

Az, y) = logs[p(z,)]

If X\(z,y) is less than or equal to the constan{described below in sec-
tion 3.7.8) the texture is said to be magnified,; if it is greatee texture is minified.

Let s(z,y) be the function that associates saitexture coordinate with each set
of window coordinates$z, y) that lie within a primitive; define(z, y) analogously.
Letu(z,y) = 2"s(x,y) andv(z,y) = 2™t(z,y), wheren andm are as defined by
equations 3.12 and 3.13 with, andh, equal to the width and height of the image
array whose level is zero. For a polygaonmjs given at a fragment with window
coordinategx, y) by

A ov\ 2 ou\? o\ ?
"‘m‘”‘w () + (5 V &) (&) } G194
wheredu/dx indicates the derivative af with respect to window, and similarly

for the other derivatives.
For a line, the formula is

2 2
p= \/(%Ax + %Ay) + (%Aac + %Ay) /l, (3.15)
whereAx = x5 — x; and Ay = yo — y1 with (x1,y1) and (z2, y2) being the
segment’s window coordinate endpoints dne /Axz? + Ay2. For a point or
point sprite p = 1.

While it is generally agreed that equations 3.14 and 3.18 tiie best results
when texturing, they are often impractical to implement. efifiore, an imple-
mentation may approximate the idealwith a function f(z,y) subject to these
conditions:

1. f(z,y) is continuous and monotonically increasing in each|@f/oz|,
|0u/0yl, |Ov/dx], |Ov/dyl,

2. Let
{22221
Mhu = A% ox|’ | Oy
Mo = Hhax ox|’ |y

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 85

Thenmax{m,, m,} < f(z,y) < my + my,.

When X indicates minification, the value assignedTE&XTURE.M N.FI LTER
is used to determine how the texture value for a fragment lsctd. When
TEXTURE_M NFI LTER is NEAREST, the texel in the image array of level zero that
is nearest (in Manhattan distance) to that specifietsbs) is obtained. This means
the texel at locatiorfi, j) becomes the texture value, witlgiven by

. U, s<1
z:{ %nJ_l e (3.16)

(Recall that ifTEXTURE_WRAP_S is REPEAT, then0 < s < 1.) Similarly, j is found
as

. v, t<1
]—{2m_1’ P (3.17)

WhenTEXTURE.M NLFI LTERIs LI NEAR, a2 x 2 squareof texels in the image
array of level zero is selected. This squasebtained by first wrapping texture
coordinates as described in section 3.7.6, then computing

. { lu—1/2] mod 2", TEXTURE.WRAP_S is REPEAT
0 pr—

lu—1/2], otherwise
and
- |v—1/2) mod 2™, TEXTURERAP_T is REPEAT
J0= lv—1/2], otherwise
Then
i (ip + 1) mod 2", TEXTUREWRAP_S is REPEAT
7 g+ 1, otherwise
and
| (jo+1)mod 2™, TEXTUREVRAP_T is REPEAT
M= jo+1, otherwise
Let

a = frac(u — 1/2)
B = frac(v — 1/2)

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 86

wherefrac(x) denotes the fractional part of

The texture value is found as

T = (1 - a)(l - B)Tiojo + a(l - ﬂ)Tile + (1 - O‘)BTiojl + aﬂTim& (3-18)

wherer;; is the texel at locatioi, j) in the texture image.

Mipmapping
TEXTUREM N_FI LTER values NEAREST_M PMAP_NEAREST,
NEAREST_M PVAP_LI NEAR, LI NEAR M PVAP_NEAREST, and

LI NEAR.M PMAP_LI NEAR each require the use of mipmap A mipmap is
an ordered set of arrays representing the same image; eaghhas a resolution
lower than the previous one. If the image array of level zeas dimensions
2" x 2™, then there arenax{n, m} + 1 image arrays in the mipmap. Each array
subsequent to the array of level zero has dimensions

o(i—1)xo(j—1)
where the dimensions of the previous array are

o(i) x ()
and

2% x>0
@) =97 L<o

until the last array is reached with dimensibrx 1.

Each array in a mipmap is defined usifgximage2Dor CopyTeximage2D
the array being set is indicated with the level-of-detagumnentlevel Level-
of-detail numbers proceed from zero for the original tegtarray throughy =
max{n, m} with each unit increase indicating an array of half the disiens of
the previous one as already described. All arrays from Zierough ¢ must be
defined, as discussed in section 3.7.9.

The mipmap is used in conjunction with the level of detail pp@ximate the
application of an appropriately filtered texture to a fragmelLet ¢ be the value
of \ at which the transition from minification to magnificationcoics (since this
discussion pertains to minification, we are concerned orilly vialues ofA where
A > o).

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 87

For mipmap filters NEAREST_-M PVAP_NEAREST and
LI NEAR.M PMAP_NEAREST, thedth mipmap array is selected, where
0, A<
d=<{ A+3]1-1, A>3 <qg+13 (3.19)
q, A>q+ %
The rules forNEAREST or LI NEAR filtering are then applied to the selected

array.
For mipmap filterSNEAREST_M PMAP_LI NEAR andL|l NEAR.M PMAP_LI NEAR,
the leveld; andds mipmap arrays are selected, where

_ q, A>q
= { |A|, otherwise (3.20)
_) 9 A>q
== { dy + 1, otherwise (3.21)

The rules forNEAREST or LI NEAR filtering are then applied to each of the
selected arrays, yielding two corresponding texture \&lgyeand 5. The final
texture value is then found as

7 = [1 — frac(\)]m1 + frac(A)7s.

Automatic Mipmap Generation

If the value of texture paramet@ENERATE M PMAP is TRUE, making any change
to the texels of the zero level array of a mipmap will also catepa complete set
of mipmap arrays (as defined in section 3.7.9) derived freemtiodified zero level
array. Array levelsl throughg arereplaced with the derived arrays, regardless of
their previous contents. The zero level array is left ungeahby this computation.

The internal formats of the derived mipmap arrays all matasé of the zero
level array, and the dimensions of the derived arrays folllbevrequirements de-
scribed in section 3.7.9.

The contents of the derived arrays are computed by repddteted reduction
of the zero level array. No particular filter algorithm is tégd, though & x 2 box
filter is recommended as the default filter. In some implemigons, filter quality
may be affected by hints (section 5.2).

Automatic mipmap generation is available only for non-pragxture image
targets.

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 88

3.7.8 Texture Magnification

When)\ indicates magnification, the value assignedTEXTURE_.MAGFI LTER
determines how the texture value is obtained. There are twssible values
for TEXTURE_MAG FI LTER: NEAREST andLl NEAR. NEAREST behaves exactly as
NEAREST for TEXTURE_M NLFI LTER (equations 3.16 and 3.17 are usdd)NEAR
behaves exactly asl NEAR for TEXTURE.M N.FI LTER (equation 3.18 is used).
The level-of-detail zero texture array is always used fogmfcation.

Finally, there is the choice of, the minification vs. magnification switch-
over point. If the magnification filter is given byl NEAR and the minification
filter is given byNEAREST_M PMAP_NEAREST or NEAREST_M PMAP_LI NEAR, then
¢ = 0.5. This is done to ensure that a minified texture does not apgearper”
than a magnified texture. Otherwise= 0.

3.7.9 Texture Completeness

A texture is said to be complete if all the image arrays andutexparameters
required to utilize the texture for texture application @sistently defined.
A texture iscompletef the following conditions all hold true:

e The set of mipmap arrays zero througfwhereq is defined in thélipmap-
ping discussion of section 3.7.7) were each specified with thesatarnal
format.

e The dimensions of the arrays follow the sequence describdeMipmap-
ping discussion of section 3.7.7.

e Each dimension of the zero level array is positive.

Effects of Completeness on Texture Application

If texturing is enabled for a texture unit at the time a priwgtis rasterized, if
TEXTURE.M NFI LTER is one that requires a mipmap, and if the texture image
bound to the enabled texture target is not complete, therai if texture mapping
were disabled for that texture unit.

Effects of Completeness on Texture Image Specification

An implementation may allow a texture image array of levelrigceater to be
created only if a complete set of image arrays consisterit thi¢ requested array
can be supported.

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 89

3.7.10 Texture State

The state necessary for texture can be divided into two odg=y First, there is
the set of mipmap arrays and their number. Each array hasiatsw with it a
width and height, an integer describing the internal forofdhe image, six integer
values describing the resolutions of each of the red, gideme, alpha, luminance,
and intensity components of the image, a boolean describivegher the image is
compressed or not, and an integer size of a compressed ifBagh.initial texture
array is null (zero width and height, internal formiatwith the compressed flag
set toFALSE, a zero compressed size, and zero-sized components). tNex,
are the two sets of texture properties; each consists ofdleeted minification
and magnification filters, the wrap modes foand¢, and a boolean indicating
whether automatic mipmap generation should be performiedhe initial state,
the value assigned tOEXTURE M NFI LTER is NEAREST_M PVAP_LI NEAR, and
the value fOITEXTURE_MAG.FI LTERis LI NEAR. s andt wrap modes are both set
to REPEAT. The value ofGENERATE M PMAP is false.

3.7.11 Texture Objects

In addition to the default texturéEXTURE_2D, named texture objects can be cre-
ated and operated upon. The name space for texture objebis isisigned inte-
gers, with zero reserved by the GL.

A texture object is created byinding an unused name OEXTURE 2D. The
binding is effected by calling

voi d BindTexture(enumtarget ui nt texture);

with target set to TEXTURE_2D and textureset to the unused name. The result-
ing texture object is a new state vector, comprising all ttatesvalues listed in
section 3.7.10, set to the same initial values.

BindTexture may also be used to bind an existing texture object to
TEXTURE_2D. If the bind is successful no change is made to the state dfdbed
texture object, and any previous bindingtéogetis broken.

While a texture object is bound, GL operations on the targewhich it is
bound affect the bound object, and queries of the target tohwihis bound return
state from the bound object. If texture mapping is enabileel state of the bound
texture object directs the texturing operation.

TEXTURE_2D has atexture state vector associated with it. In order that acces
to this initial texture not be lost, it is treated as a textabgect whose names is O.

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 90

The initial texture is therefore operated upon, queried, and applig&&BURE_2D
while 0 is bound to the corresponding targets.
Texture objects are deleted by calling

voi d DeleteTextureg si zei n, ui nt *textures);

texturescontainsn names of texture objects to be deleted. After a texture bbjec
is deleted, it has no contents, and its name is again unugedtekture that is
currently bound to the targ@tEXTURE_2D is deleted, it is as thougBindTexture
had been executed with the satametandtexturezero. Unused names iaxtures
are silently ignored, as is the value zero.

The command

voi d GenTextureq si zei n, ui nt *textures);

returnsn previously unused texture object namestéstures These names are
marked as used, for the purposesGe#EnTexturesonly, but they acquire texture
state only when they are first bound, just as if they were unused.

The texture object name space, including the initiekture object, is shared
among all texture units. A texture object may be bound to ntioa® one texture
unit simultaneously. After a texture object is bound, anyd@plerations on that tar-
get object affect any other texture units to which the samiite object is bound.

Texture binding is affected by the setting of the s#&@#1 VE_TEXTURE.

If a texture object is deleted, it is as if all texture unitsigfhare bound to that
texture object are rebound to texture object zero.

3.7.12 Texture Environments and Texture Functions

The command

voi d TexEnv{ixf}(enumtarget enumpname T param);
voi d TexEnv{ixf}v(enumtarget enumpname T params);

sets parameters of thexture environmenthat specifies how texture values are
interpreted when texturing a fragment.

targetmust beTEXTURE_ENV. pnameis a symbolic constant indicating the pa-
rameter to be set. In the first form of the commapdramis a value to which to
set a single-valued parameter; in the second fgranamsis a pointer to an array
of parameters: either a single symbolic constant or a vafwgraup of values to
which the parameter should be set.

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 91

Texture Base Texture source color
Internal Format C Ag
ALPHA (0,0,0) Ay
LUM NANCE (L¢, Ly, Ly) 1
LUM NANCE ALPHA | (L, Ly, Ly) | Ay
RGB (Rt, Gt, Bt) 1
RGBA (R, Gy, By) | Ay

Table 3.14: Correspondence of filtered texture componertsxture source com-
ponents.

The possible environment parameters ar@ EXTURE_ENV_MODE,
TEXTURE_ENV_COLOR, COVBI NE_RGB, andCOVBI NE_AL PHA. TEXTURE_ENV_MODE
may be set to one dREPLACE, MODULATE, DECAL, BLEND, ADD, or COVBI NE.
TEXTURE_ENV_COLOR is set to an RGBA color by providing four values in the
range|0, 1] (values outside this range are clamped to it). If integeespaovided
for TEXTURE_ENV_COLOR, then they are converted to floating-point as specified in
table 2.7 for signed integers.

The value of TEXTURE_ENV_MODE specifies aexture function The result of
this function depends on the fragment and the texture aradiyev The precise
form of the function depends on the base internal formath®téxture arrays that
were last specified.

Cy andAf2 are the primary color components of the incoming fragméht;
and A, are the components of the texture source color, derived trwrfiltered
texture valuesk;, Gy, B, A, Ly, andl; as shown in table 3.14). and A, are
the components of the texture environment coldy;and A, are the components
resulting from the previous texture environment (for tegtanvironment 0, and
A, are identical taC'y and A, respectively); and’, and A, are the primary color
components computed by the texture function.

All of these color values are in the ranffe 1]. The texture functions are spec-
ified in tables 3.15, 3.16, and 3.17.

If the value of TEXTURE_ENV_MODE is COVBI NE, the form of the texture func-
tion depends on the values GDVBI NE_.RGB and COMBI NE_ALPHA, according to
table 3.17. ThdrGB andALPHA results of the texture function are then multiplied

2In the remainder of section 3.7.12, the notaiiénis used to denote each of the three components
R., G, and B, of a color specified by. Operations orC’;, are performed independently for each
color component. Thel component of colors is usually operated on in a differenhifas, and is
therefore denoted separately Hy.

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING

92

Texture Base REPLACE | MODULATE | DECAL

Internal Format Function | Function Function

ALPHA C,=0C, | C, =0C,) undefined
A, =As | Ay = ApA;

LUM NANCE Cy,=0C,s | Cy =C,Cs | undefined

(orl) Ay, =Ap | Ay =4,

LUM NANCEALPHA | C, = Cy | C, = C,Cs | undefined

(or2) A, =As | Ay = ApA;

RGB Co=0Cs | C,=0C)Cs | Cy =0C

(or 3) A, =A, | Ay =4, A, = A,

RGBA Co=0Cs | C,=0C,Cs | C, =Cp(1 —Ag) + CsAs

(or 4) A, =As | Ay =A,A, | A, =4,

Table 3.15: Texture functionREPL

f

, MODULATE, andDECAL.

Texture Base BLEND ADD
Internal Format Function Function
ALPHA Cy, =0, Cy=GCp

A, = ApA; A, =ApA;
LUM NANCE Co=Cp(1-Cs)+C.Cs | Cy=Cp +Cs
(or1) Ay, =4, A, = A,
LUM NANCEALPHA | C,, = Cp(1 — Cs) + C.Cs | Cp = Cp + Cs
(or2) Ay = ApA, A, = ApA,
RGB C,=C(1-C5)+C.Cs | Cy =Cp+Cs
(or 3) A, =4, A, = A,
RGBA C,=C,(1-C5)+CCs | C,=Cp+Cs
(or 4) Ay = ApA; A, = ApA,

Table 3.16: Texture functiondLEND and ADD.

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 93

COMBI NELRGB | Texture Function \

REPLACE Arg0
MODULATE Arg0 x Argl
ADD Arg0 4 Argl

ADD.SI GNED | Arg0+ Argl —0.5
| NTERPOLATE | Arg0 * Arg2 + Argl x (1 — Arg2)

SUBTRACT Arg0 — Argl
DOT3_RGB 4 x ((Arg0, — 0.5) * (Argl, — 0.5)+
(Arg0, — 0.5) * (Argly, — 0.5)+
(Arg0p, — 0.5) * (Argl, — 0.5))

DOT3_RGBA 4 x ((Arg0, — 0.5) % (Argl, — 0.5)+
(Arg0, — 0.5) * (Argly, — 0.5)+
(Arg0p, — 0.5) * (Argl, — 0.5))

COMBI NE_ALPHA | Texture Function \

REPLACE Arg0

MODULATE Arg0 x Argl

ADD Arg0 + Argl

ADD_S| GNED Arg0 + Argl — 0.5

| NTERPOLATE Arg0 * Arg2 4+ Argl = (1 — Arg2)
SUBTRACT Arg0 — Argl

Table 3.17:COMVBI NE texture functions. The scalar expression computed for the
DOT3_RGB andDOT3_RGBA functions is placed into each of theR3B) or 4 (RGBA)
components of the output. The result generated f@mwBI NE_ALPHA is ignored

for DOT3_RGBA.

by the values o0RGB_SCALE andALPHA_SCALE, respectively (the scale factors may
only take on values of 1.0, 2.0, or 4.0)he results are clamped f@ 1].

The argumentsArg0, Argl, and Arg2 are determined by the values of
SRCn_RGB, SRCn_ALPHA, OPERANDN_RGB and OPERANDN_ALPHA, wheren = 0,

1, or 2, as shown in tables 3.18 and 3.19.

The state required for the current texture environment,efach texture unit,
consists of a six-valued integer indicating the texturecfiom, an eight-valued in-
teger indicating th&kGB combiner function and a six-valued integer indicating the
ALPHA combiner function, six four-valued integers indicating ttombinerrRGB
and ALPHA source arguments, three four-valued integers indicatiegcombiner

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING

SRCn_RGB

OPERANDN_RGB

| Argument |

TEXTURE

SRC.COLOR
ONE_M NUS_SRC_COLOR
SRC_ALPHA
ONE_M NUS_SRC_ALPHA

Cs
1-C,
As
1— A,

CONSTANT

SRC_COLCR
ONE_M NUS_SRC_COLCR
SRC_ALPHA
ONE_M NUS_SRC_ALPHA

Ce
1-C,
Ac
1— A,

PRI MARY_COLOR

SRC.COLOR
ONE_M NUS_SRC_COLOR
SRC_ALPHA
ONE_M NUS_SRC_ALPHA

Cy
1—Cf
Ay
1— A

PREVI QUS

SRC_COLCR
ONE_M NUS_SRC_COLCR
SRC_ALPHA
ONE_M NUS_SRC_ALPHA

Cp
1-C,
AP

1- A,

Table 3.18: Arguments faZOVBI NE_RGB functions.

SRCn_ALPHA OPERANDN_ALPHA | Argument |
TEXTURE SRC_ALPHA A

ONE_M NUS_SRCALPHA | 1 — A,
CONSTANT SRC_ALPHA A,

ONE_M NUS_SRCALPHA | 1 — A,
PRI MARY_COLOR | SRC_ALPHA Ay

ONEM NUS_SRCALPHA | 1 — Ay
PREVI OUS SRC_ALPHA A,

ONE.M NUS_SRCALPHA | 1 — A,

Table 3.19: Arguments fazOVBI NE_ALPHA functions.

Version 1.1.10 (DRAFT - March 31, 2007)

94

3.7. TEXTURING 95

RGB operands, three two-valued integers indicating the coerl®ihPHA operands,
four floating-point environment color values, and two thvedued floating-point
scale factors In the initial state, the texture and combiner functions aach
MODULATE, the combineRGB and ALPHA sources are eacfEXTURE, PREVI OUS,
andCONSTANT for sources 0, 1, and 2 respectively, the combiR@s operands for
sources 0 and 1 are eaBRC COLCR, the combineiRGB operand for source 2, as
well as for the combineALPHA operands, are eacdRC_ALPHA, the environment
color is(0,0,0,0), andRGB_SCALE andALPHA SCALE are each 1.0

3.7.13 Texture Application

Texturing is enabled or disabled using the genEnable andDisablecommands,
with the symbolic constanTEXTURE_2D to enable or disable texturing, respec-
tively. If texturing is disabled, a rasterized fragment &sped on unaltered to the
next stage of the GL (although its texture coordinates maglibearded). Other-
wise, a texture value is found according to the parametearegabf the currently
bound texture imageusing the rules given in sections 3.7.6 through 3.7.8. This
texture value is used along with the incoming fragment in potimg the texture
function indicated by the currently bound texture envir@min The result of this
function replaces the incoming fragment’s primary R, G, Bd & values. These
are the color values passed to subsequent operations. @tteeassociated with
the incoming fragment remain unchanged, except that tharexoordinates may
be discarded.

Each texture unit is paired with an environment functiorsta@wn in figure 3.9.
The second texture function is computed using the textulkgevigom the second
texture, the fragment resulting from the first texture fumectcomputation and the
second texture unit’s environment function. If there isiedtiexture, the fragment
resulting from the second texture function is combined \ih#hthird texture value
using the third texture unit's environment function and g0 ®he texture unit se-
lected byActiveTexture determines which texture unit's environment is modified
by TexEnv calls.

If the value of TEXTURE_ENV_MODE is COVBI NE, the texture function associated
with a given texture unit is computed using the values sptibly SRCn_RGB,
SRCn_ALPHA, OPERANDN_RGB and OPERANDN _ALPHA.

Texturing is enabled and disabled individually for eachuexunit. If texturing
is disabled for one of the units, then the fragment resulfiog the previous unit
is passed unaltered to the following unit.

The required state, per texture unit, is oneibdicating whether texturing is
enabled or disabled. In the initial stateexturing is disabled for all texture units.

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 96

TE, |
Clo— TE, |—®
CTy - TE, |—®
CT, - TE, |—®C
CT, -

C; =fragment prima ry color inputtot exturing

C'; =fragment color ou tput from texturing
CT; =texture color fro m texture lookup i

TE; = texture environ ment i

Figure 3.9. Multitexture pipeline. Four texture units an@wn; however, multitex-
turing may support a different number of units dependinglanitnplementation.
The input fragment color is successively combined with éagkure according to
the state of the corresponding texture environment, ancethéting fragment color
passed as input to the next texture unit in the pipeline.

Version 1.1.10 (DRAFT - March 31, 2007)

3.8. FOG 97

3.8 Fog

If enabled, fog blends a fog color with a rasterized fragrisgmbst-texturing color
using a blending factof. Fog is enabled and disabled with tBeableandDisable
commands using the symbolic constan.

This factor f is computed according to one of three equations:

f=exp(—d-c), (3.22)
f=exp(—(d-c)?),or (3.23)
f= Z - z (3.24)

c is the eye-coordinate distance from the ee, 0, 1) in eye coordinates, to the
fragment center. The equation, along with either e ands, is specified with

voi d Fog{xf}(enumpname T param);
voi d Fog{xf}v(enumpname T params);

If pnameis FOG.MODE, then param must be, orparamsmust point to an inte-
ger that is one of the symbolic constamsP, EXP2, or LI NEAR, in which case
equation 3.22, 3.23, or 3.24, respectively, is selectedHerfog calculation (if,
when 3.24 is selected, = s, results are undefined). fnameis FOG.DENSI TY,
FOG_START, or FOG.END, thenparamis or paramspoints to a value that ig, s, or
e, respectively. Ifd is specified less than zero, the erfdivVALI D_VALUE results.

An implementation may choose to approximate the eye-coatdidistance
from the eye to each fragment center |by|. Further, f need not be computed at
each fragment, but may be computed at each vertex and ifdéedaas other data
are.

No matter which equation and approximation is used to computhe result
is clamped td0, 1] to obtain the finalf.

If C,. represents a rasterized fragment’s R, G, or B value, thendhespond-
ing value produced by fog is

C=fC.+(1—-f)Cy.

(The rasterized fragment's A value is not changed by fogditemn) The R, G, B,
and A values of”'; are specified by callinfrog with pnameequal toFOG.COLOR;

in this caseparamspoints to four values comprising’;. If these are not floating-
point values, then they are converted to floating-point gisire conversion given

Version 1.1.10 (DRAFT - March 31, 2007)

3.9. ANTIALIASING APPLICATION 98

in table 2.7 for signed integers. Each componenCefis clamped tq0, 1] when
specified.

The state required for fog consists of a three-valued imtégeselect the fog
equation three floating-point values, e, ands, an RGBA fog color, and a single
bit to indicate whether or not fog is enabled. In the initidts, fog is disabled,
FOGMODE is EXP, d = 1.0, e = 1.0, ands = 0.0; C = (0,0,0,0) andi = 0.

3.9 Antialiasing Application

Finally, if antialiasing is enabled for the primitive fromhich a rasterized fragment
was produced, then the computed coverage value is applite: thagment. The
value is multiplied by the fragment’s alpha (A) value to i@l final alpha value.

3.10 Multisample Point Fade

If multisampling is enabled and the rasterized fragmentltegrom a point prim-
itive, then the computed fade factor from equation 3.2 idiaggo the fragment.
The fade factor is multiplied by the fragment’s alpha valagield a final alpha
value.

Version 1.1.10 (DRAFT - March 31, 2007)

Chapter 4

Per-Fragment Operations and the
Framebuffer

The framebuffer consists of a set of pixels arranged as adiwmensional array.
The height and width of this array may vary from one GL impletadion to an-
other. For purposes of this discussion, each pixel in thedétauffer is simply a set
of some number of bits. The number of bits per pixel may alsy dapending on
the particular GL implementation or context.

Corresponding bits from each pixel in the framebuffer areuged together
into abitplane each bitplane contains a single bit from each pixel. Théptalnes
are grouped into severébgical buffers These are theolor, depth and stencil
buffers. The color buffer consists of either or both ofrent (single) buffer and
a backbuffer. Typically the contents of the front buffer are depdd on a color
monitor while the contents of the back buffer are invisiblée color buffers must
have the same number of bitplanes, although a context mgyogde both types
of buffers. Further, an implementation or context may naowjae depth or stencil
buffers.

Color buffers consist of R, G, B, and, optionally, A unsigrieteger values.
The number of bitplanes in each of the color buffers, the lidpiffer, and the
stencil buffer is fixed and window dependent.

The initial state of all provided bitplanes is undefined.

4.1 Per-Fragment Operations

A fragment produced by rasterization with window coordesaof (z,,, v,,) mod-
ifies the pixel in the framebuffer at that location based omialper of parameters

99

4.1. PER-FRAGMENT OPERATIONS 100

Fragment Pixel Multisample

+ — : Scissor
Associated Ownership = Test —>| Fragment
Test Operations

Depth Buffer < Stencil < Alpha

Test Test Test

Framebuffer AA Framebuffer<A

Blending =P Dithering =P Logicop [P Fram:guffer

Framebuffer J Framebuffer J

Figure 4.1. Per-fragment operations.

and conditions. We describe these modifications and testgrastnmed in Fig-
ure 4.1, in the order in which they are performed.

4.1.1 Pixel Ownership Test

The first test is to determine if the pixel at locati¢n,,, y,,) in the framebuffer
is currently owned by the GL (more precisely, by this GL catite If it is not,
the window system decides the fate of the incoming fragmieassible results are
that the fragment is discarded or that some subset of theequbat per-fragment
operations are applied to the fragment. This test allowswitrelow system to
control the GL's behavior, for instance, when a GL window iscured.

4.1.2 Scissor Test

The scissor test determines(if,,, y.,) lies within the scissor rectangle defined by
four values. These values are set with

voi d Scissof i nt left, i nt bottom si zei width,
si zei height);

Version 1.1.10 (DRAFT - March 31, 2007)

4.1. PER-FRAGMENT OPERATIONS 101

If left < z,, < left + width andbottom< y,, < bottom-+ height then the scissor
test passes. Otherwise, the test fails and the fragmensdcamdied. The test is
enabled or disabled usirignable or Disable using the constarCl SSOR TEST.
When disabled, it is as if the scissor test always passesthdrevidth or height

is less than zero, then the erfoxVALI D_-VALUE is generated. The state required
consists of four integer values and a bit indicating whethertest is enabled or
disabled. In the initial state: ft = bottom = 0; width andheight are determined
by the size of the GL window. Initially, the scissor test isabled.

4.1.3 Multisample Fragment Operations

This step modifies fragment alpha and coverage values baseiheo values
of SAMPLE_ALPHA_TO.COVERAGE, SAMPLE_ALPHA_ TO ONE, SAMPLE_COVERAGE,
SAMPLE_COVERAGE VAL UE, and SAMPLE COVERAGE | NVERT. No changes to the
fragment alpha or coverage values are made at this stdpLifl SAMPLE is dis-
abled, or ifSAMPLE_BUFFERS is not a value of one.

SAMPLE_ALPHA TO COVERAGE, SAVPLE ALPHA TO ONE, and
SAMPLE_COVERAGE are enabled and disabled by calliignable and Disable
with cap specified as one of the three token values. All three values ar
queried by callinglsEnabled with cap set to the desired token value. If
SAMPLE ALPHA TO.COVERAGE is enabled, a temporary coverage value is gen-
erated where each bit is determined by the alpha value at dhesponding
sample location. The temporary coverage value is then ANREigdthe fragment
coverage value. Otherwise the fragment coverage valuecisamged at this point.

No specific algorithm is required for converting the samgfgha values to a
temporary coverage value. It is intended that the numbersoiihlthe temporary
coverage be proportional to the set of alpha values for thgnfient, with all 1's
corresponding to the maximum of all alpha values, and allcOisesponding to
all alpha values being 0. It is also intended that the allgoribe pseudo-random
in nature, to avoid image artifacts due to regular coveragepte locations. The
algorithm can and probably should be different at differgixel locations. |If it
does differ, it should be defined relative to window, not sarecoordinates, so that
rendering results are invariant with respect to window posi

Next, if SAMPLE_ ALPHA TO.ONE is enabled, each alpha value is replaced by the
maximum representable alpha value. Otherwise, the alplhavare not changed.

Finally, if SAMPLE COVERAGE is enabled, the fragment coverage is ANDed
with another temporary coverage. This temporary coveragegenerated
in the same manner as the one described above, but as a funatio
the value of SAMPLE COVERAGE VALUE. The function need not be identical,
but it must have the same properties of proportionality amdarance. If

Version 1.1.10 (DRAFT - March 31, 2007)

4.1. PER-FRAGMENT OPERATIONS 102

SAMPLE COVERAGE | NVERT is TRUE, the temporary coverage is inverted (all bit
values are inverted) before it is ANDed with the fragmenterage.

The values ofSAMPLE_COVERAGE VALUE and SAMPLE COVERAGE.| NVERT
are specified by calling

voi d SampleCoveragécl anpf valug bool eaninvert);
voi d SampleCoveragekcl anpx valug bool ean invert);

with value set to the desired coverage value, amgert set to TRUE or FALSE.

value is clamped to [0,1] before being stored 88MPLE_COVERAGE_VALUE.

SAMPLE COVERAGE VALUE is queried by callingGetFloaty with pnameset to
SAMPLE_COVERAGE_VALUE. SAMPLE_COVERAGE.I NVERT is queried by calling
GetBooleanvwith pnameset toSAMPLE_COVERAGE | NVERT.

4.1.4 Alpha Test

The alpha test discards a fragment conditional on the owgaafra comparison be-
tween the incoming fragment’s alpha value and a constanevalhe comparison
is enabled or disabled with the geneEaable and Disable commands using the
symbolic constanfLPHA TEST. When disabled, it is as if the comparison always
passes. The test is controlled with

voi d AlphaFunc(enumfung cl anpf ref);
voi d AlphaFuncx(enumfuncg cl anpx ref);

funcis a symbolic constant indicating the alpha test functiai;is a reference
value. ref is clamped to lie if0, 1], and then converted to a fixed-point value ac-
cording to the rules given for an A component in section B1Z-or purposes
of the alpha test, the fragment’s alpha value is also rouriddtie nearest inte-
ger. The possible constants specifying the test functieN&YER, ALWAYS, LESS,
LEQUAL, EQUAL, GEQUAL, GREATER, or NOTEQUAL, meaning pass the fragment
never, always, if the fragment’s alpha value is less thass, flean or equal to, equal
to, greater than or equal to, greater than, or not equal tcefleeence value, respec-
tively.

The required state consists of the floating-point referevalee, an eight-
valued integer indicating the comparison function, andténiicating if the com-
parison is enabled or disabled. The initial state is for #ference value to be
and the function to baLWAYS. Initially, the alpha test is disabled.

Version 1.1.10 (DRAFT - March 31, 2007)

4.1. PER-FRAGMENT OPERATIONS 103

4.1.5 Stencil Test

The stencil test conditionally discards a fragment basethermutcome of a com-
parison between the value in the stencil buffer at locatiop, v,,) and a reference
value. The test is controlled with

voi d StencilFung enumfunc i nt ref, ui nt mask);
voi d StencilOp(enumsfail, enumdpfail, enumdppass);

The test is enabled or disabled with tBeable andDisable commands, using the
symbolic constan8TENCI L_TEST. When disabled, the stencil test and associated
modifications are not made, and the fragment is always passed

refis an integer reference value that is used in the unsignedist®mparison.

It is clamped to the rang®), 2° — 1], wheres is the number of bits in the stencil
buffer. funcis a symbolic constant that determines the stencil compafisnction;

the eight symbolic constants a¥EVER, ALWAYS, LESS, LEQUAL, EQUAL, GEQUAL,
GREATER, or NOTEQUAL. Accordingly, the stencil test passes never, always, if the
reference value is less than, less than or equal to, equatidater than or equal to,
greater than, or not equal to the masked stored value ing¢heisbuffer. Thes least
significant bits ofmaskare bitwise ANDed with both the reference and the stored
stencil value. The ANDed values are those that participatee comparison.

StencilOptakes three arguments that indicate what happens to thedstten-
cil value if this or certain subsequent tests fail or padfail indicates what action
is taken if the stencil test fails. The symbolic constanesk&EP, ZERO, REPLACE,

I NCR, DECR, andl NVERT. These correspond to keeping the current value, setting
to zero, replacing with the reference value, incrementinth waturation, decre-
menting with saturation, and bitwise inverting it.

For purposes of increment and decrement, the stencil l@ts@rsidered as an
unsigned integer. Incrementing or decrementing with séitum clamps the stencil
value at0 and the maximum representable value.

The same symbolic values are given to indicate the stentdrad the depth
buffer test (below) failsqpfail), or if it passesdppas3.

If the stencil test fails, the incoming fragment is discatd€he state required
consists of the most recent values passe&tencilFunc and StencilOp, and a
bit indicating whether stencil testing is enabled or disdbl In the initial state,
stenciling is disabled, the stencil reference value is ,z#te stencil comparison
function is ALWAYS, and the stencimaskis all ones. Initially, all three stencil
operations ar&EEP. If there is no stencil buffer, no stencil modification camcog
and it is as if the stencil tests always pass, regardlessyofais toStencilOp.

Version 1.1.10 (DRAFT - March 31, 2007)

4.1. PER-FRAGMENT OPERATIONS 104

4.1.6 Depth Buffer Test

The depth buffer test discards the incoming fragment if aldepmparison fails.
The comparison is enabled or disabled with the gerieniable andDisable com-
mands using the symbolic const@EPTH TEST. When disabled, the depth com-
parison and subsequent possible updates to the depth Yalffierare bypassed and
the fragment is passed to the next operation. The stencieyalowever, is modi-
fied as indicated below as if the depth buffer test passedalbled, the comparison
takes place and the depth buffer and stencil value may substy be modified.
The comparison is specified with

voi d DepthFung enumfunc);

This command takes a single symbolic constant: onsEMER, ALWAYS, LESS,
LEQUAL, EQUAL, GREATER, GEQUAL, NOTEQUAL. Accordingly, the depth buffer
test passes never, always, if the incoming fragment'svalue is less than, less
than or equal to, equal to, greater than, greater than orl éguar not equal to
the depth value stored at the location given by the incomiagrient’s(x,,, y.,)
coordinates.

If the depth buffer test fails, the incoming fragment is disied. The stencil
value at the fragmentér,,, y,,) coordinates is updated according to the function
currently in effect for depth buffer test failure. Otherajghe fragment continues
to the next operation and the value of the depth buffer atrdgnient's(x,,, y.,)
location is set to the fragment’s, value. In this case the stencil value is updated
according to the function currently in effect for depth lauffest success.

The necessary state is an eight-valued integer and a sirigiadicating
whether depth buffering is enabled or disabled. In theahsiate the function
is LESS and the test is disabled.

If there is no depth buffer, it is as if the depth buffer testas passes.

4.1.7 Blending

Blending combines the incomingpurcefragment’s R, G, B, and A values with
the destinationR, G, B, and A values stored in the framebuffer at the fragraent
(2w, yw) lOcation.

Source and destination values are combined according tirgpiets of source
and destination weighting factors determined bylitend functiorto obtain a new
set of R, G, B, and A values, as described below. Each of theatint-point
values is clamped tf), 1] and converted back to a fixed-point value in the manner
described in section 2.12.8. The resulting four values em¢te the next operation.

Version 1.1.10 (DRAFT - March 31, 2007)

4.1. PER-FRAGMENT OPERATIONS 105

Blending is dependent on the incoming fragment's alphaevahd that of the
corresponding currently stored pixel. Blending is enaledlisabled usind=n-
able or Disable with the symbolic constarBLEND. If it is disabled, or if logical
operation on color values is enabled (section 4.1.9), mwde the next operation.

Blend Equation

Blending is controlled by the equation

C=0,54+CyqD

where(refers to the new color resulting from blending; refers to the source
color for an incoming fragment and, refers to the destination color at the corre-
sponding framebuffer location. Individual RGBA comporseof these colors are
denoted by subscripts efandd respectively.S and D are quadruplets of weight-
ing factors determined by tHdend functiondescribed below.

Destination (framebuffer) components are taken to be fp@dt values rep-
resented according to the scheme given in section 2.12n8l(Eiolor Processing),
as are source (fragment) components.

Prior to blending, each fixed-point color component undesgan implied con-
version to floating point. This conversion must leave thei®al0 and 1 invariant.
Blending computations are treated as if carried out in flmpgoint.

The blend equation is evaluated separately for each colmpoaent and the
corresponding weighting factors.

Blend Functions

The weighting factors used by the blend equation are deteunby the blend
function. The blend function is specified with the command

voi d BlendFung enumsrc, enumdst);

BlendFunc argumentsrc determines the sourceS) blend factors, andist
determines the destinatiorD}f blend factors for each color component. The
possible source and destination blend functions and theresponding com-
puted blend factors are summarized in Table 4.1. The funstitST_COLOR,
ONE_M NUS_DST_COLOR, and SRC_ALPHA SATURATE are valid only forsrc, and
the functionsSRC_COLOR and ONE_M NUS_SRC_COLOR are valid only fordst All
other functions are valid for eitherc or dst

Version 1.1.10 (DRAFT - March 31, 2007)

4.1. PER-FRAGMENT OPERATIONS 106

Function Blend Factors
(Sr, Sg, S, Sa) OF (D, Dy, Dy, Dg,)
(0,0,0,0)
(1,1,1,0)
(Rs,Gg, Bs, Ay)
ONE_M NUS_SRC.COLCR | (1,1,1,1) — (Rs, G, Bs, As)
DST_.COLOR (Rd,Gd By, Aq)
ONE_M NUS.DST_.COLOR | (1,1,1,1) — (Rgq, G4, Ba, Ag)
(
(
(
(
(

ZERO
ONE
SRC.COLOR

SRC_ALPHA Ag, Ag, Ag, Ag)

ONE_M NUS_SRCALPHA | (1,1,1,1) — (As, As, A, Ag)
Ag, Ad, Ad, Aa)

1,1,1,1) — (Ag, Ag, Ag, Ag)
LA

Table 4.1:RGB and ALPHA source and destination blending functions and the cor-

responding blend factors. Addition and subtraction isqaned component-wise.
L f =min(A,, 1 — Ay).

DST_ALPHA
ONE_M NUS_DST_ALPHA
SRC_ALPHA_SATURATE

Blending State

The state required for blending is two integers indicatimgsource and destination
blending and a bit indicating whether blending is enabledisabled. The initial
blending functions ar@NE for the source functions argERO for the destination
functions. Initially, blending is disabled.

Blending uses the color buffer selected for writing (sedisaet.2.1) using that
buffer’s color forCy. If a color buffer has no A value, theA, is taken to bd.

4.1.8 Dithering

Dithering selects between two color valu€onsider the value of any of the color
components as a fixed-point value withbits to the left of the binary point, where
m is the number of bits allocated to that component in the fiarffer; call each
such value-. For eachr, dithering selects a valug such that; € {max{0, [c¢]| —
1}, [c]} (after this selection, treat; as a fixed point value in [0,1] witim bits).
This selection may depend on thg andy,, coordinates of the pixelc must not
be larger than the maximum value representable in the fraffezlfor either the
component or the index, as appropriate.

Many dithering algorithms are possible, but a dithered @gdtoduced by any
algorithm must depend only the incoming value and the fragimie andy window

Version 1.1.10 (DRAFT - March 31, 2007)

4.1. PER-FRAGMENT OPERATIONS 107

coordinates. If dithering is disabled, then each color congnt is truncated to a
fixed-point value with as many bits as there are in the comedimg component in
the framebulffer.

Dithering is enabled witkEnable and disabled witlDisableusing the symbolic
constantDl THER. The state required is thus a single bit. Initially, ditimgriis
enabled.

4.1.9 Logical Operation

Finally, a logical operation is applied between the incagrfirmgment’s color and
the color stored at the corresponding location in the framffeb The result re-
places the values in the framebuffer at the fragmdnt;s v,,) coordinates. Logical
operation on color values is enabled or disabled \Fittable or Disable using the
symbolic constanCOLOR LOG C_OP. If the logical operation is enabled for color
values, it is as if blending were disabled, regardless otétiee ofBLEND.

The logical operation is selected by

voi d LogicOp(enumaop);

opis a symbolic constant; the possible constants and come§pp operations are
enumerated in Table 4.2. In this tables the value of the incoming fragment and
d is the value stored in the framebuffer

Logical operations are performed independently for eadhgesen, blue, and
alpha value of each color buffer that is selected for writiige required state is an
integer indicating the logical operation, and two bits gading whether the logical
operation is enabled or disabled. The initial state is ferlthgic operation to be
given byCOPY, and to be disabled.

4.1.10 Additional Multisample Fragment Operations

If MULTI SAMPLE is enabled, and the value BAMPLE BUFFERS is one, the alpha
test, stencil test, depth test, blending, and ditheringaijfm:ns are performed for
each pixel sample, rather than just once for each fragmeaiture of the alpha,
stencil, or depth test results in termination of the processf that sample, rather
than discarding of the fragment. All operations are perfednon the color, depth,
and stencil values stored in the multisample buffer (to tecdeed in a following
section). The contents of the color buffer are not modifiettiatpoint.

Stencil, depth, blending, and dithering operations ardopeied for a pixel
sample only if that sample’s fragment coverage bit is a valug. If the corre-
sponding coverage bit is 0, no operations are performechédrdample.

Version 1.1.10 (DRAFT - March 31, 2007)

4.1. PER-FRAGMENT OPERATIONS 108

Argument value | Operation
CLEAR 0

AND sAd
AND_REVERSE s A\ —d
CorPY S

AND_I NVERTED s Ad
NOOP d

XOR sxor d
OR sVd

NOR —(sVd)
EQUI V —(s xor d)
I NVERT —d
OR_REVERSE sV —d
COPY_I NVERTED | —s

ORI NVERTED —sVd
NAND (s A d)
SET all ’s

Table 4.2: Arguments thogicOp and their corresponding operations.

If MULTI SAMPLE is disabled, and the value 8AMPLE_BUFFERS is one, the
fragment may be treated exactly as described above, wiimization possible
because the fragment coverage must be set to full coverageaeF optimization is
allowed, however. An implementation may choose to iderifgntermost sample,
and to perform alpha, stencil, and depth tests on only thapka Regardless of
the outcome of the stencil test, all multisample buffer sfesample values are set
to the appropriate new stencil value. If the depth test gasdlemultisample buffer
depth sample values are set to the depth of the fragmentieroeost sample’s
depth value, and all multisample buffer color sample valaesset to the color
value of the incoming fragment. Otherwise, no change is niadey multisample
buffer color or depth value.

After all operations have been completed on the multisarbpfter, the color
sample values are combined to produce a single color vahaethet value is writ-
ten into the color buffer selected for writing (see sectioR.?). An implementa-
tion may defer the writing of the color buffer until a latemi, but the state of the
framebuffer must behave as if the color buffer was updateebah fragment was
processed. The method of combination is not specified, thaugimple average
computed independently for each color component is recamieg:

Version 1.1.10 (DRAFT - March 31, 2007)

4.2. WHOLE FRAMEBUFFER OPERATIONS 109

4.2 Whole Framebuffer Operations

The preceding sections described the operations that asdadividual fragments
are sent to the framebuffer. This section describes opasthat control or affect
the whole framebuffer.

4.2.1 Selecting a Buffer for Writing

Color values are written into the front buffer for single fared contexts, or into
the back buffer for back buffered contexts. The type of cxiritedetermined when
creating a GL context.

4.2.2 Fine Control of Buffer Updates

Four commands are used to mask the writing of bits to eacheolodiical frame-
buffers after all per-fragment operations have been peréol. The command

voi d ColorMask(bool eanr, bool eang, bool ean b,
bool ean a);

controls the writing of R, G, B and A values to the color buffer g, b, anda
indicate whether R, G, B, or A values, respectively, aretemitor not (a value of
TRUE means that the corresponding value is written). In theahgtate, all color
values are enabled for writing.

The depth buffer can be enabled or disabled for writipgvalues using

voi d DepthMask(bool ean mask);

If maskis non-zero, the depth buffer is enabled for writing; othisayit is disabled.
In the initial state, the depth buffer is enabled for writing
The command

voi d StencilMask(ui nt mask);

controls the writing of particular bits into the stencil p&s. The least significant
bits of maskcomprise an integer mask is the number of bits in the stencil buffer).
The initial state is for the stencil plane mask to be all ones.

The state required for the masking operations is an integrestencil values
and a bit for depth values. A set of four bits is also requiratidgating which color
components of an RGBA value should be written. In the iniialte, the stencil
mask is all ones, as are the bits controlling depth value aB®8/&R component
writing.

Version 1.1.10 (DRAFT - March 31, 2007)

4.2. WHOLE FRAMEBUFFER OPERATIONS 110

Fine Control of Multisample Buffer Updates

When the value 06AMPLE BUFFERS is one,ColorMask, DepthMask, andSten-
cilMask control the modification of values in the multisample buff@ihe color
mask has no effect on modifications to the color buffer. Ifdbkr mask is entirely
disabled, the color sample values must still be combined€asribed above) and
the result used to replace values of the color buffer.

4.2.3 Clearing the Buffers

The GL provides a means for setting portions of every pixel jparticular buffer
to the same value. The argument to

voi d Clear(bi tfi el dbuf);

is the bitwise OR of a number of values indicating which #fare to
be cleared. The values ar@O.ORBUFFERBI T, DEPTHBUFFERBI T, and
STENCI L_BUFFER.BI T, indicating the color buffer, the depth buffer, and the sten
cil buffer, respectively. The value to which each buffer isacted depends on the
setting of the clear value for that buffer. If the mask is ndiilavise OR of the
specified values, then the erfoVALI D_VALUE is generated.

voi d ClearColor(cl anpf r, cl anmpf g, cl anpf b,
cl ampf a);

voi d ClearColorx(cl anmpxr, cl anpx g, cl anpx b,
cl ampx a);

sets the clear value for the color buffefEach of the specified components is
clamped to[0,1] and converted to fixed-point according to the rules of sec-
tion 2.12.8.

voi d ClearDepthf(cl anpf d);
voi d ClearDepthx(cl anpx d);

takes a value that is clamped to the raffyé] and converted to fixed-point accord-
ing to the rules for a window value given in section 2.10.1. Similarly,

voi d ClearStencil(i nt s);
takes a single integer argument that is the value to whiclketar the stencil buffer.

sis masked to the number of bitplanes in the stencil buffer.

Version 1.1.10 (DRAFT - March 31, 2007)

4.3. READING PIXELS 111

When Clear is called, the only per-fragment operations that are agp(ie
enabled) are the pixel ownership test, the scissor testdginering. The masking
operations described in the last section (4.2.2) are afsctefe. If a buffer is not
present, then &lear directed at that buffer has no effect.

The state required for clearing is a clear value for each efdblor buffer,
the depth buffer, and the stencil buffer. Initially, the R&Bolor clear value is
(0,0,0,0), the stencil buffer clear value is 0, and the déptfer clear value is 1.0.

Clearing the Multisample Buffer

The color samples of the multisample buffer are cleared whercolor buffer is
cleared, as specified by ti@ear mask bitCOLOR BUFFER BI T.

If the Clear mask bitsDEPTH.BUFFER_BI T or STENCI L_BUFFER_BI T are set,
then the corresponding depth or stencil samples, respdgtare cleared.

4.3 Reading Pixels

Pixels may be read from the framebuffer to client memory gigive ReadPixels
commands, as described below. Pixels may also be copieddient memory or
the framebuffer to texture images in the GL using Teglmage2DandCopyTex-
Image2D commands, as described in section 3.7.1.

4.3.1 Reading Pixels

The method for reading pixels from the framebuffer and pigdihem in client
memory is diagrammed in Figure 4.2. We describe the stagdgegdixel reading
process in the order in which they occur.

Pixels are read using

voi d ReadPixelgi nt x, i nt y, si zei width, si zei height
enumformat enumtype voi d *data);

The arguments aftex andy to ReadPixelsare those described in section 3.6.2
defining pixel rectangles. Only two combinations format and type are ac-
cepted. The first igormat RGBA and type UNSI GNEDBYTE. The second is an
implementation-chosen format from among those definedbtetd.4. The val-
ues offormatandtypefor this format may be determined by calligetintegerv
with the symbolic constants MPLEMENTATI ON_.COLOR_READ_FORMAT_CES and

| MPLEMENTATI ONL.COLOR READ.TYPE CES, respectively. The implementation-
chosen format may vary depending on the format of the cuyréaiund rendering

Version 1.1.10 (DRAFT - March 31, 2007)

4.3. READING PIXELS 112

RGBA pixel data in _¢

Convert to float

Pixel Storage

Clamp to [0,1] Operations

'

Pack

byte, short, or packed
pixel component data stream

Figure 4.2. Operation dReadPixels Operations in dashed boxes may be enabled
or disabled.

| Parameter Name | Type | Initial Value | Valid Range|
| PACKALI GNMVENT | integer | 4 | 1248 |

Table 4.3:PixelStore parameters pertaining ®eadPixels

surface The pixel storage modes that apply ReadPixelsare summarized in
Table 4.3.

Obtaining Pixels from the Framebuffer

The buffer from which values are obtained is the color buifeed for writing (see
section 4.2.1).

ReadPixelsobtains values from the color buffer (with lower left handroer
at (0,0)) for each pixel(z + i,y + j) for 0 < i < width and0 < j < height;
this pixel is said to be théh pixel in thejth row. If any of these pixels lies outside
of the window allocated to the current GL context, the valabtined for those
pixels are undefined. Results are also undefined for ind@Vigixels that are not
owned by the current context. OtherwiseadPixelsobtains values from the color
buffer, regardless of how those values were placed there.

Version 1.1.10 (DRAFT - March 31, 2007)

4.3. READING PIXELS 113

typeParameter GL Data Type| Component
Conversion Formulg
UNSI GNED.BYTE ubyt e c=(22-1)f

UNSI GNED_SHORT 5 6 5 ushort c=02N -1)f
UNSI GNED_SHORT 4 4 4 4 ushort c=02VN -1)f
UNSI GNED_SHORT 5 5 5 1 ushort c=02N -1)f

Table 4.4: Reversed component conversions, used when campdata are be-
ing returned to client memory. Color components are coadgeftom the internal
floating-point representatiorf)] to a datum of the specified GL data typ¢ (sing
the specified equation. All arithmetic is done in the intéftaating point format.
These conversions apply to component data returned by Gily geenmands and
to components of pixel data returned to client memory. Thea#&gns remain the
same even if the implemented ranges of the GL data types asdegrthan the
minimum required ranges. (See Table 2.2.) Equations Withs the exponent are
performed for each bitfield of the packed data type, wittset to the number of
bits in the bitfield.

If formatis RGBA, then red, green, blue, and alpha values are obtained from
the selected buffer at each pixel location. If the framedauffoes not support alpha
values then the A that is obtained is 1.0.

Conversion of RGBA values

The R, G, B, and A values form a group of elements. Each elemeaken to
be a fixed-point value if0, 1] with m bits, wherem is the number of bits in the
corresponding color component of the selected buffer (seton 2.12.8).

Final Conversion

Each component is first clamped|tg 1]. Then the appropriate conversion formula
from table 4.4 is applied to the component.

Placement in Client Memory

Groups of elements are placed in memory just as they are fatenmemory for
Teximage2D That is, theith group of thejth row (corresponding to th&h pixel
in the jth row) is placed in memory just where thith group of thejth row would

Version 1.1.10 (DRAFT - March 31, 2007)

4.3. READING PIXELS 114

be taken from forTeximage2D SeeUnpacking under section 3.6.2. The only
difference is that the storage mode parameters whose naggaswith PACK_ are
used instead of those whose names begin WNRACK_. If formatis ALPHA or
LUM NANCE, only the corresponding single element is written. Likemifsformat

is LUM NANCE_ALPHA or RGB, only the corresponding two or three elements are
written. Otherwise all the elements of each group are writte

4.3.2 Pixel Draw/Read State

The state required for pixel operations consists of therpatars that are set with
PixelStore This state has been summarized in tables 3.1. State seRixétStore
is GL client state.

Version 1.1.10 (DRAFT - March 31, 2007)

Chapter 5

Special Functions

This chapter describes additional GL functionality thagsloot fit easily into any
of the preceding chapters: flushing and finishing (used tolegmize the GL com-
mand stream), and hints.

5.1 Flush and Finish
The command
voi d Flush(voi d);
indicates that all commands that have previously been séin¢tGL must complete
in finite time.
The command

voi d Finish(voi d);

forces all previous GL commands to completéinish does not return until all
effects from previously issued commands on GL client andesestate and the
framebuffer are fully realized.

5.2 Hints

Certain aspects of GL behavior, when there is room for vianaimay be controlled
with hints. A hint is specified using

voi d Hint(enumtarget enumhint);

115

5.2. HINTS 116

targetis a symbolic constant indicating the behavior to be colgdylandhint is a
symbolic constant indicating what type of behavior is dasitargetmay be one
of PERSPECTI VE_CORRECTI ON HI NT, indicating the desired quality of parame-
ter interpolation; PO NT_SMOOTH_HI NT, indicating the desired sampling quality
of points; LI NE_.SMOOTH_HI NT, indicating the desired sampling quality of lines;
FOG.HI NT, indicating whether fog calculations are done per pixel er yertex;
and GENERATE_M PMAP_HI NT, indicating the desired quality and performance of
automatic mipmap level generatiohint must be one oFASTEST, indicating that
the most efficient option should be chosei;CEST, indicating that the highest
quality option should be chosen; abANT_CARE, indicating no preference in the
matter.

The interpretation of hints is implementation dependent iiplementation
may ignore them entirely.

The initial value of all hints i$ONT_CARE.

Version 1.1.10 (DRAFT - March 31, 2007)

Chapter 6

State and State Requests

The state required to describe the GL machine is enumenatsection 6.2. Most
state is set through the calls described in previous chapserd can be queried
using the calls described in section 6.1.

6.1 Querying GL State

6.1.1 Simple Queries

Much of the GL state is completely identified by symbolic danss. The values
of these state variables can be obtained using a seebtommands. There are
four commands for obtaining simple state variables:

voi d GetBoolean{ enumvalug bool ean *data);
voi d Getintegerv(enumvalue i nt *data);
voi d GetFixed enumvalug fi xed *data);
voi d GetFloatv(enumvalug fl oat *data);

The commands obtain boolean, integer, fixed-point, or fhgagioint state vari-
ables.valueis a symbolic constant indicating the state variable torretdatais a
pointer to a scalar or array of the indicated type in whichleze the returned data.
In addition

bool ean IsEnabled(enumvalue);

can be used to determinevidlueis currently enabled (as witBnable) or disabled.

117

6.1. QUERYING GL STATE 118

6.1.2 Data Conversions

If a Get command is issued that returns value types different fragrtype of the
value being obtained, a type conversion is performed.

If GetBooleanvis called, a floating-point, fixed-point, or integer valuaerts
to FALSE if and only if it is zero (otherwise it converts TRUE).

If Getintegerv (or any of theGet commands below) is called, a boolean
value is interpreted as eithdr or 0, and a floating-point or fixed-point value
is rounded to the nearest integer, unless the value is an RGB#& compo-
nent, aDepthRange value, a depth buffer clear value, or a normal coordi-
nate. In these cases, tliget command converts the floating-point or fixed-
point value to an integer according theNT entry of Table 4.4; a value not in
[—1,1] converts to an undefined value. Additionally, if the targétGetinte-
gerv is one of the special valuégoDELVI EWNMATRI X_FLOAT_AS_|I NT_BI TS_CES,
PRQIECTI ONLMATRI X_FLOAT_AS_I NT_BI TS_CES,
or TEXTURE_MATRI X_FLOAT_AS_| NT_BI TS_CES, then the corresponding floating-
point matrix elements are returned in an array of integessp@ling to the IEEE
754 floating point “single format” bit layodt?.

If GetFixedvis called, a boolean value is interpreted as eithéror 0.0, and
an integer or floating-point value is coerced to fixed-point.

If GetFloatv is called, a boolean value is interpreted as eithéror 0.0, and
an integer or fixed-point value is coerced to floating-point.

If a value is so large in magnitude that it cannot be representith the re-
quested type, then the nearest value representable usirmgdbested type is re-
turned.

Unless otherwise indicated, multi-valued state varialoégsrn their multiple
values in the same order as they are given as arguments tortiaands that set
them. For instance, the twidepthRangeparameters are returned in the oraer
followed byf.

Most texture state variables are qualified by the valu@&@fl VE_TEXTURE
to determine which server texture state vector is queried.lienC texture
state variables such as texture coordinate array pointersgaalified by the
value of CLI ENT_ACTI VE_.TEXTURE. Tables 6.3, 6.4, 6.7, 6.13, 6.15, and 6.21
indicate those state variables which are qualified AyTI VE TEXTURE or

1This functionality exists for applications using the Conmwldte profile which nonetheless need
access to the full accuracy of the internal matrix represt@nt, but is available in the Common profile
as well

2|EEE 1987. IEEE Standard 754-1985 for Binary Floating-PokArithmetic, IEEE.
Reprinted in SIGPLAN 22 2, 9-25. Also see the IEEE 754 Working Group Page at
http://grouper.ieee.org/groups/754/

Version 1.1.10 (DRAFT - March 31, 2007)

6.1. QUERYING GL STATE 119

CLI ENT_ACTI VE_TEXTURE during state queries.

6.1.3 Enumerated Queries

Other commands exist to obtain state variables that ardifidehby a category
(clip plane, light, material, etc.) as well as a symbolicstant. These are

voi d GetClipPlane{xf}(enumplane T eqn[4]);
voi d GetLight{xf}v(enumlight, enumvalue T data);
voi d GetMaterial {xf}v(enumface enumvalue T data);
voi d GetTexEnv{ixf}v(enumeny, enumvalue T data);
voi d GetTexParametefixf }v(enumtarget enumvalue
T data);
voi d GetBufferParameteriv(enumtarget enumvalug
T data);

GetClipPlane always returns four values ieqn these are the coefficients of the
plane equation oplanein eye coordinates (these coordinates are those that were
computed when the plane was specified).

GetLight places information abowalue(a symbolic constant) fdight (also a
symbolic constant) inlata POSI TI ON or SPOT_DI RECTI ON returns values in eye
coordinates (again, these are the coordinates that werputechwhen the position
or direction was specified).

GetMaterial, GetTexEnv, GetTexParameter, andGetBufferParameter are
similar to GetLight, placing information aboutalue for the target indicated by
their first argument intalata The faceargument toGetMaterial must be either
FRONT or BACK, indicating the front or back material, respectively. Tdmeargu-
ment toGetTexEnv must beTEXTURE_ENV.

GetTexParameterparametetarget must beTEXTURE_2D, indicating the cur-
rently bound texture objectvalueis a symbolic value indicating which texture
parameter is to be obtained. FGetTexParameter, value must be one of the
symbolic values in table 3.13.

6.1.4 Texture Queries

The command

bool ean IsTexture(ui nt texture);

Version 1.1.10 (DRAFT - March 31, 2007)

6.1. QUERYING GL STATE 120

returnsTRUE if textureis the name of a texture object.téxtureis zero, or is a non-
zero value that is not the name of a texture object, or if aorerondition occurs,
IsTexture returnsFALSE. A hame returned bysenTextures but not yet bound, is
not the name of a texture object.

6.1.5 Pointer and String Queries

The command
voi d GetPointerv(enumpname voi d **params);

obtains the pointer or pointers namgelamein the arrayparams The possible
values for pname are VERTEXARRAY_PO NTER, NORVAL_ARRAY_PO NTER,
COLOR ARRAY_POl NTER, TEXTURE_COORD_ARRAY_PO NTER, and
PO NT_SI ZE_.ARRAY_PO NTER_CES. Each returns a single pointer value.
Finally,

ubyt e *GetString(enumname);

returns a pointer to a static string describing some asgettteocurrent GL con-
nection. The possible values foameare VENDOR, RENDERER, VERSI ON, and
EXTENSI ONS. The format of theRENDERER andVENDOR strings is implementation
dependent. Th&XTENSI ONS string contains a space separated list of extension
names (the extension names themselves do not contain args$ptheVERSI ON
string has the format

"OpenGL ES- XX N. M

whereXXis a two-character profile identifier, eitheMfor the Common profile
or CL for the Common-List profile, anN. Mare the major and minor version num-
bers of the OpenGL ES implementation, separated by a pesiodeptlyl. 1).

GetString returns the version number (returned in ¥eRSI ON string) and
the extension names (returned in tRETENSI ONS string) that can be supported
on the connection. Thus, if the client and server suppofémrint versions and/or
extensions, a compatible version and list of extensionstigmed.

6.1.6 Buffer Object Queries

The command
bool ean IsBuffer(ui nt buffer);

returnsTRUE if bufferis the name of an buffer object. Wufferis zero, or ifbuffer
is a non-zero value that is not the name of an buffer objsBtffer returnFALSE.

Version 1.1.10 (DRAFT - March 31, 2007)

6.2. STATE TABLES 121

6.2 State Tables

The tables on the following pages indicate which state téefare obtained with
what commands. State variables that can be obtained usjngfapetBooleany
Getintegerv, GetFixedy, or GetFloatv are listed with just one of these commands
— the one that is most appropriate given the type of the dalve teturned. These
state variables cannot be obtained udsignabled. However, state variables for
which IsEnabledis listed as the query command can also be obtained @atg
Booleany Getintegerv, GetFixedyv, andGetFloatv. State variables for which any
other command is listed as the query command can be obtaimgdyp using that
command.

In the Common-Lite profileGetFixedv should be used wherevéretFloatv is
listed in the state tables.

State table entries which are required only by optional resitens are type-
se against a gray background .

A type is also indicated for each variable. Table 6.1 explaivese types. The
type actually identifies all state associated with the iadid description; in certain
cases only a portion of this state is returned. This is the edth all matrices,
where only the top entry on the stack is returned; with clgngls, where only the
selected clip plane is returned, with parameters desgibghts, where only the
value pertaining to the selected light is returned; and véxtures, where only the
selected texture or texture parameter is returned.

Version 1.1.10 (DRAFT - March 31, 2007)

6.2. STATE TABLES

| Type code| Explanation

B Boolean
BMU Basic machine units
C Color (floating-point R, G, B, and A values)
T Texture coordinates (floating-point ¢, r, ¢ val-
ues)

N Normal coordinates (floating-point, i, =z values)
v Vertex, including associated data

A Integer

zZt Non-negative integer

Z, Zi | k-valued integerix indicatesk is minimum)
R Floating-point number
R* Non-negative floating-point number
R[*Y | Floating-point number in the rande, b|

RF k-tuple of floating-point numbers

Ry k-valued floating-poirmtumber

P Position (, y, z, w floating-point coordinates)
D Direction (z, y, z floating-point coordinates)
M* 4 x 4 floating-point matrix

I Image

Y Pointer (data type unspecified)

n X type | ncopies of typeype (n* indicatesn is minimum)

Table 6.1: State variable types

Version 1.1.10 (DRAFT - March 31, 2007)

122

(2002 ‘TE YoreN - 14vHa) 0T T'T UOISIBA

(a|qissaadsa|gRLIRA 81RIS A|quiasse aAniwiLd [eulaiu] 19 "Z'9 a|gel

Get Initial
Getvalue Type Cmnd Value Description Sec. Attribute
- v - - Previous vertex in a line segment | 2.6.1 -
- B - - Indicates ifline-vertexis the first 26.1 -
- v - - First vertex of a line loop 2.6.1 -
- 2xV - - Previous two vertices in a triangle | 2.6.1 -
strip
- Z3 - - Number of vertices so far in 2.6.1 -
triangle strip: 0, 1, or more
- Z - - Triangle strip A/B vertex pointer 2.6.1 -

S318V.L 31VIS 29

XA

(2002 ‘TE YoreN - 14vHa) 0T T'T UOISIBA

el PalRIDOSSY pue SanfeA uaund 'S 9 ajgel

Get Initial o .
Get value Type Cmnd Value Description Sec. Attribute
Getlntegerv,
CURRENT.COLOR C GetFloatv 1,1,1,1| Current color 2.7 | current
CURRENT.TEXTURE.COORDS || 2 * XT' GetFloatv 0,0,0,1| Current texture coordinates 2.7 current
CURRENTNORMAL N GetFloatv 0,0,1 | Current normal 2.7 | current
- C — - Color associated with last vertex 2.6 -
- T - - Texture coordinates associated with 2.6 -

last vertex

S318V.L 31VIS 29

1£A"

(2002 ‘TE YoreN - 14vHa) 0T T'T UOISIBA

ereq Aelly xaUaA "7'9 a|gel

Get Initial

Get value Type Cmnd Value Description Sec. Attribute
CLENTACTIVE TEXTURE || Zo, | Getintegerv | TEXTUREO | Client active texture unit selector | 2.7 | vertex-array
VERTEX_ARRAY B IsEnabled False Vertex array enable 2.8 | vertex-array
VERTEX_ARRAY _SIZE Z* | Getlintegerv 4 Coordinates per vertex 2.8 | vertex-array
VERTEX.ARRAY_TYPE Z, | Getlntegerv FLOAT Type of vertex coordinates 2.8 | vertex-array
VERTEX_ARRAY_STRIDE Z*+ | Getintegerv 0 Stride between vertices 2.8 | vertex-array
VERTEX_ARRAY_POINTER Y GetPointerv 0 Pointer to the vertex array 2.8 | vertex-array
NORMAL_ARRAY B IsEnabled False Normal array enable 2.8 | vertex-array
NORMAL_ARRAY _TYPE Zs | Getlntegerv FLOAT Type of normal coordinates 2.8 | vertex-array
NORMAL_ARRAY _STRIDE Z*+ | Getintegerv 0 Stride between normals 2.8 | vertex-array
NORMAL_ARRAY_POINTER Y GetPointerv 0 Pointer to the normal array 2.8 | vertex-array
COLOR ARRAY B IsEnabled False Color array enable 2.8 | vertex-array
COLORARRAY _SIZE Z% | Getintegerv 4 Color components per vertex 2.8 | vertex-array
COLORARRAY TYPE Zs | Getlntegerv FLOAT Type of color components 2.8 | vertex-array
COLOR ARRAY _STRIDE Z% | Getintegerv 0 Stride between colors 2.8 | vertex-array
COLORARRAY_POINTER Y GetPointerv 0 Pointer to the color array 2.8 | vertex-array

S318V.L 31VIS 29

STA

(L00Z ‘TE YoIe - 14vHa) OT'T'T UOISIaA
("u09) ereq ARy XBUBA 'G'9 3|geL

Get Initial

Get value Type Cmnd Value Description Sec. Attribute
TEXTURE.COORDARRAY 2% xB IsEnabled False | Texture coordinate array enable 2.8 | vertex-array
TEXTURE.COORDARRAY _SIZE 2+ xZ T | Getlntegerv 4 Coordinates per element 2.8 | vertex-array
TEXTURE.COORDARRAY _TYPE 2% xZ4 | Getintegerv | FLOAT | Type of texture coordinates 2.8 | vertex-array
TEXTURE.COORDARRAY_STRIDE 2+ xZ T | Getlntegerv 0 Stride between texture coordinates 2.8 | vertex-array
TEXTURE.COORDARRAY_POINTER 2% xY | GetPointerv 0 Pointer to the texture coordinate 2.8 | vertex-array

array

& POINT.SIZE ARRAY_OES B IsEnabled False | Point size array enable 2.8 | vertex-array
& POINT.SIZE ARRAY TYPE OES Zo Getintegerv | FLOAT | Type of point sizes 2.8 | vertex-array
& POINT.SIZE ARRAY_STRIDE.OES A Getlintegerv 0 Stride between point sizes 2.8 | vertex-array
& POINT.SIZE ARRAY_POINTEROES Y GetPointerv 0 Pointer to the point size array 2.8 | vertex-array
ARRAY_BUFFERBINDING A Getlintegerv 0 current buffer binding 2.9 | vertex-array
VERTEX_ARRAY _BUFFERBINDING zZ+ Getlintegerv 0 vertex array buffer binding 2.9 | vertex-array
NORMAL ARRAY .BUFFERBINDING A Getlintegerv 0 normal array buffer binding 2.9 | vertex-array
COLOR ARRAY_BUFFERBINDING zZ+ Getlintegerv 0 color array buffer binding 2.9 | vertex-array
TEXTURE.COORDARRAY_BUFFERBINDING 2+ xZ*t | Getintegerv 0 texcoord array buffer binding 2.9 | vertex-array
& POINT.SIZE ARRAY_BUFFERBINDING .OES zZ+ Getlintegerv 0 point size array buffer binding 2.9 | vertex-array
ELEMENT.ARRAY .BUFFERBINDING A Getlintegerv 0 element array buffer binding 2.9.2 | vertex-array

S318V.L 31VIS 29

9T

(2002 ‘TE YoreN - 14vHa) 0T T'T UOISIBA

a1e1s 109[qO Jayng "9°9 9|qeL

Get Initial
Get value Type Cmnd Value Description Sec. Attribute
n x BMU GetBufferSubData - buffer data 29 -
BUFFERSIZE nxZt GetBufferParameteriv 0 buffer data size 2.9 -
BUFFERUSAGE nx2Z° GetBufferParameteriv | STATIC.DRAW | buffer usage pattern 29 -

S318V.L 31VIS 29

LT

R B RdReR) OF 4 el

e

(Lo%q

Get Initial
Get value Type Cmnd Value Description Sec. Attribute
MODELVIEW.MATRIX 16 % x M* GetFloatv Identity Model-view matrix stack| 2.10.2 -
PROJECTIONMATRIX 2% x M* GetFloatv Identity Projection matrix stack | 2.10.2 -
TEXTURE MATRIX 2% x2 % xM?* GetFloatv Identity Texture matrix stack 2.10.2 -
& MOD- 4x4xZ Getlntegerv Identity Alias of 2.10.2 -
ELVIEW_MATRIX _FLOAT AS_INT.BITS.OES MODELVI EWMATRI X
in integer encoding
& PROJEC- 4x4xZ Getlntegerv Identity Alias of 2.10.2 -
TION_MATRIX _FLOAT_AS_INT_BITS.OES PRQIECTI ONLMATRI X
in integer encoding
& TEX- 4dx4xZ Getlntegerv Identity Alias of 2.10.2 -
TURE.MATRIX _FLOAT.AS_INT_BITS.OES TEXTURE_VATRI Xin
integer encoding
VIEWPORT 4x 7 Getlntegerv see 2.10.1 | Viewport origin & extent | 2.10.1 viewport
DEPTHRANGE 2x Rt GetFloatv 0,1 Depth range near & far | 2.10.1 viewport
MODELVIEW.STACK_DEPTH A Getlntegerv 1 Model-view matrix stack| 2.10.2 -
pointer
PROJECTIONSTACK DEPTH zZ+ Getlntegerv 1 Projection matrix stack | 2.10.2 -
pointer
TEXTURE STACK_DEPTH 2% xZT Getlntegerv 1 Texture matrix stack 2.10.2 -
pointer
MATRIX _MODE Zy Getintegerv | MODELVI EW| Current matrix mode 2.10.2 transform
NORMALIZE B IsEnabled False Current normal 2.10.3| transform/enablg
normalization on/off
RESCALENORMAL B IsEnabled False Current normal rescaling 2.10.3| transform/enablg
on/off
CLIP_PLANE; 1% xR?* GetClipPlane 0,0,0,0 User clipping plane 2.11 transform
coefficients
CLIP_PLANE; 1% xB IsEnabled False ith user clipping plane 2.11 | transform/enablg

enabled

S318V.L 31VIS 29

8¢T

(2002 ‘TE YoreN - 14vHa) 0T T'T UOISIBA

Buuojod "g'9 8|gelL

Get Initial

Get value Type Cmnd Value Description Sec. Attribute
FOG.COLOR C GetFloatv 0,0,0,0 | Fog color 3.8 fog
FOG.DENSITY R GetFloatv 1.0 Exponential fog density 3.8 fog
FOG.START R GetFloatv 0.0 Linear fog start 3.8 fog
FOGEND R GetFloatv 1.0 Linear fog end 3.8 fog
FOGMODE Z3 | Getintegerv EXP Fog mode 3.8 fog

FOG B IsEnabled False | True if fog enabled 3.8 | fog/enable
stabemobeL || ZT | Getintegerv | SMOOTH | ShadeModelsetting 2.12.6| lighting

S318V.L 31VIS 29

6T

(2002 ‘TE YoreN - 14vHa) 0T T'T UOISIBA

(syneyap Jo) 8'¢ 8|qeL osfe 8as) Bunybi *6°9 a|qeL

Get Initial
Get value Type Cmnd Value Description Sec. Attribute

LIGHTING B IsEnabled False True if lightingis | 2.12.1| lighting/enable
enabled

COLORMATERIAL B IsEnabled False True if color 2.12.3| lighting/enable
tracking is
enabled

AMBIENT 2 x C | GetMaterialfv | (0.2,0.2,0.2,1.0) Ambient material | 2.12.1 lighting
color

DIFFUSE 2 x C | GetMaterialfv | (0.8,0.8,0.8,1.0) Diffuse material | 2.12.1 lighting
color

SPECULAR 2 x C | GetMaterialfv | (0.0,0.0,0.0,1.0) Specular material| 2.12.1 lighting
color

EMISSION 2 x C | GetMaterialfv | (0.0,0.0,0.0,1.0) Emissive mat. 2.12.1 lighting
color

SHININESS 2 x R | GetMaterialfv 0.0 Specular 2121 lighting
exponent of
material

LIGHT.MODEL AMBIENT C GetFloatv (0.2,0.2,0.2,1.0) Ambient scene 2.12.1 lighting
color

LIGHT MODEL_TWO_SIDE B GetBooleanv False Use two-sided 2.12.1 lighting

lighting

S318V.L 31VIS 29

0€T

(2002 ‘TE YoreN - 14vHa) 0T T'T UOISIBA

('u02) Bunybi1 "0T'9 9|1qeL

Get Initial
Get value Type Cmnd Value Description Sec. Attribute
AMBIENT 8 x xC' | GetLightfv | (0.0,0.0,0.0,1.0) Ambient intensity of light 2121 lighting
DIFFUSE 8% xC' | GetLightfv see 2.5 Diffuse intensity of light; 2121 lighting
SPECULAR 8 x xC' | GetLightfv see 2.5 Specular intensity of light 2121 lighting
POSITION 8 x x P | GetLightfv | (0.0,0.0,1.0,0.0) Position of lighti 2121 lighting
CONSTANTATTENUATION 8% xR' | GetLightfv 1.0 Constant atten. factor 2121 lighting
LINEAR .ATTENUATION 8 * xRT | GetLightfv 0.0 Linear atten. factor 2121 lighting
QUADRATICATTENUATION || 8 % X RT | GetLightfv 0.0 Quadratic atten. factor 2121 lighting
SPOTDIRECTION 8 x xD | GetLightfv (0.0,0.0,-1.0) | Spotlight direction of light 2121 lighting
SPOTEXPONENT 8% xR' | GetLightfv 0.0 Spotlight exponent of light 2121 lighting
SPOTCUTOFF 8 x x RT | GetLightfv 180.0 Spot. angle of light 2121 lighting
LIGHT: 8% xB IsEnabled False True if light ¢ enabled 2.12.1| lighting/enable

S318V.L 31VIS 29

TET

(2002 ‘TE YoreN - 14vHa) 0T T'T UOISIBA

uonezualsey "TT°9 d|qel

Get Initial
Get value Type Cmnd Value Description Sec. Attribute

POINT SIZE RT GetFloatv 1.0 | Pointsize 3.3 point
POINT.SMOOTH B IsEnabled | False | Point antialiasing on 3.3 point/enable
POINTSIZE MIN RT GetFloatv 0.0 | Attenuated minimum point size 3.3 point
POINT.SIZE MAX Rt GetFloatv ! Attenuated maximum point sizé. | 3.3 point

Max. of the impl. dependent max.

aliased and smooth point sizes.
POINT.FADE.THRESHOLDSIZE RT GetFloatv 1.0 | Threshold for alpha attenuation 3.3 point
POINT.DISTANCEATTENUATION || 3 X R™T GetFloatv 1,0,0 | Attenuation coefficients 3.3 point
POINT.SPRITEOES B IsEnabled | False | Point sprites enabled 3.3 point
LINE_WIDTH Rt GetFloatv 1.0 Line width 3.4 line
LINE.SMOOTH B IsEnabled | False | Line antialiasing on 3.4 line/enable
CULL_FACE B IsEnabled | False | Polygon culling enabled 3.5.1| polygon/enable
CULL_FACE.MODE Zs3 Getintegerv | BACK | Cull front/back facing polygons 3.5.1 polygon
FRONT.FACE Z Getintegerv | CCW | Polygon frontface CW/CCW 3.5.1 polygon

indicator
POLYGON.OFFSETFACTOR R GetFloatv 0 Polygon offset factor 3.5.2 polygon
POLYGON.OFFSETUNITS R GetFloatv 0 Polygon offset units 3.5.2 polygon
POLYGON.OFFSETFILL B IsEnabled | False | Polygon offset enable 3.5.2 | polygon/enable

S318V.L 31VIS 29

CET

(2002 ‘TE YoreN - 14vHa) 0T T'T UOISIBA

Buidwesnin "21°9 a|jqeL

Get Initial

Get value Type Cmnd Value Description Sec. Attribute
MULTISAMPLE B IsEnabled True | Multisample rasterization 3.2.1 | multisample/enablg
SAMPLE ALPHA_TO_COVERAGE B IsEnabled False | Modify coverage from alpha 4.1.3 | multisample/enableg
SAMPLE ALPHA TO_ONE B IsEnabled False | Set alpha to maximum 4.1.3 | multisample/enableg
SAMPLE COVERAGE B IsEnabled False | Mask to modify coverage 4.1.3 | multisample/enableg
SAMPLE.COVERAGEVALUE R GetFloatv 1 Coverage mask value 4.1.3 multisample
SAMPLE.COVERAGEINVERT B GetBooleanv| False | Invert coverage mask value 4.1.3 multisample

S318V.L 31VIS 29

€eT

(2002 ‘TE YoreN - 14vHa) 0T T'T UOISIBA

lodBuipuig pue 1un ainxa) Jad a1els) sainixal "€T°9 a|gel

Get Initial
Get value Type Cmnd Value Description Sec. Attribute
TEXTURE.2D 2% xB IsEnabled False | True if 2D texturing is 3.7.13| texture/enable
enabled
TEXTURE BINDING 2D 2+ xZ7T | Getlntegerv 0 Texture object boundto | 3.7.11 texture
TEXTURE_2D
& TEXTURE2D nxI - see 3.7| 2D texture image at 3.7 -

l.o.d.q

S318V.L 31VIS 29

VET

(2002 ‘TE YoreN - 14vHa) 0T T'T UOISIBA

(109lgo ainixa1 Jad arels) saunixal ‘$1°9 a|qeL

Get Initial
Get value Type Cmnd Value Description Sec. Attribute
TEXTUREMIN_FILTER n X Zg | GetTexParameter| see 3.7 | Texture minification 3.7.7| texture
function
TEXTURE.MAG_FILTER n X Zy | GetTexParameter| see 3.7 | Texture magnification 3.7.8| texture
function
& TEXTUREWRAP_S n x Zy | GetTexParameter | REPEAT | Texcoords wrap mode 3.7.6 | texture
& TEXTURE.WRAP.T n X Zy | GetTexParameter | REPEAT | Texcoordt wrap mode 3.7.6 | texture
GENERATEMIPMAP n x B | GetTexParameter| FALSE | Automatic mipmap 3.7.7| texture
generation

S318V.L 31VIS 29

GET

(2002 ‘TE YoreN - 14vHa) 0T T'T UOISIBA

UOITeIBUIS) pUE JUBWUOIIAUT 2INIX3] "ST'9 a|gel

Get Initial
Get value Type Cmnd Value Description Sec. Attribute
ACTIVE_TEXTURE Zos Getintegerv | TEXTUREO | Active texture unit selector 2.7 texture
TEXTUREENV.MODE || 2% X Zg | GetTexEnviv | MODULATE | Texture application function 3.7.12| texture
TEXTUREENV.COLOR || 2% xC | GetTexEnviv 0,0,0,0 Texture environment color 3.7.12| texture
coornRePLACECES || 2% X B | GetTexEnviv False Point coordinate replacement 3.3 texture
enabled
COMBINE.RGB 2% xZg | GetTexEnviv | MODULATE | RGB combiner function 3.7.12| texture
COMBINE.ALPHA 2x xXZg | GetTexEnviv | MODULATE | Alpha combiner function 3.7.12| texture
SRCQRGB 2% xZ3 | GetTexEnviv | TEXTURE RGB source 0 3.7.12| texture
SRCLRGB 2% xZ3 | GetTexEnviv | PREVI QUS | RGB source 1 3.7.12| texture
SRC2RGB 2% xZ3 | GetTexEnviv | CONSTANT | RGB source 2 3.7.12| texture
SRCQALPHA 2x xZ3 | GetTexEnviv | TEXTURE | Alpha source 0 3.7.12| texture
SRCILALPHA 2x xZ3 | GetTexEnviv | PREVI QUS | Alpha source 1 3.7.12| texture
SRC2ALPHA 2x xZ3 | GetTexEnviv | CONSTANT | Alpha source 2 3.7.12| texture
OPERANDQRGB 2x xZy | GetTexEnviv | SRC.COLOR | RGB operand 0 3.7.12| texture
OPERANDLRGB 2x xZ4 | GetTexEnviv | SRC.COLOR | RGB operand 1 3.7.12| texture
OPERAND2RGB 2x xZ4 | GetTexEnviv | SRCALPHA | RGB operand 2 3.7.12| texture
OPERANDQALPHA 2% XZy | GetTexEnviv | SRC.ALPHA | Alpha operand 0 3.7.12| texture
OPERANDLALPHA 2% xZy | GetTexEnviv | SRCALPHA | Alpha operand 1 3.7.12| texture
OPERAND2ALPHA 2% XZy | GetTexEnviv | SRC.ALPHA | Alpha operand 2 3.7.12| texture
& RGESCALE 2% XxR3 | GetTexEnvfv 1.0 RGB post-combiner scaling 3.7.12| texture
& ALPHA SCALE 2% xRz | GetTexEnvfv 1.0 Alpha post-combiner scaling 3.7.12| texture

S318V.L 31VIS 29

9€T

(2002 ‘TE YoreN - 14vHa) 0T T'T UOISIBA

suonesadQ [axId "9T'9 d|qel

Get Initial

Get value Type Cmnd Value Description Sec. Attribute
SCISSORTEST B IsEnabled False | Scissoring enabled 4.1.2 scissor/enable
SCISSORBOX 4 x Z | Getintegerv | see 4.1.2| Scissor box 41.2 scissor
ALPHA_TEST B IsEnabled False | Alphatestenabled 4.1.4| color-buffer/enable
ALPHA TEST.FUNC Zg Getintegerv | ALWAYS | Alpha test function 41.4 color-buffer
ALPHA_TEST.REF RT Getlintegerv 0 Alpha test reference value 4.1.4 color-buffer
STENCILTEST B IsEnabled False | Stenciling enabled 4.1.5 | stencil-buffer/enable
STENCILFUNC 73 Getintegerv | ALWAYS | Stencil function 4,15 stencil-buffer
STENCIL VALUE MASK zZ+ Getlintegerv 1's Stencil mask 4.1.5 stencil-buffer
STENCILREF A Getlintegerv 0 Stencil reference value 4.1.5 stencil-buffer
STENCILFAIL Zg Getintegerv | KEEP | Stencil fail action 4.1.5 stencil-buffer
STENCILPASSDEPTHFAIL Zg Getintegerv | KEEP | Stencil depth buffer fail action 4.1.5 stencil-buffer
STENCILPASSDEPTHPASS Zg Getintegerv | KEEP | Stencil depth buffer pass action 4.1.5 stencil-buffer
DEPTHTEST B IsEnabled False | Depth buffer enabled 4.1.6 | depth-buffer/enable
DEPTHFUNC 73 Getintegerv | LESS Depth buffer test function 4.1.6 depth-buffer
BLEND B IsEnabled False | Blending enabled 4.1.7 | color-buffer/enable
& BLEND.SRC Zg Getlintegerv ONE Blending source function 4.1.7 color-buffer
& BLEND DST Zsg Getintegerv | ZERO | Blending dest. function 41.7 color-buffer
DITHER B IsEnabled True Dithering enabled 4.1.8 | color-buffer/enable
COLORLOGIC.OP B IsEnabled False | Color logic op enabled 4.1.9| color-buffer/enable
LOGIC.OP.MODE Z1¢ | Getintegerv | COPY | Logic op function 4.1.9 color-buffer

S318V.L 31VIS 29

LET

(2002 ‘TE YoreN - 14vHa) 0T T'T UOISIBA

|0JJU0D Jayngaweld “/T'9 a|geL

Get Initial

Get value Type Cmnd Value Description Sec. Attribute
COLORWRITEMASK 4 x B | GetBooleanv| True | Colorwrite enables; R, G, B,orA | 4.2.2| color-buffer
DEPTHWRITEMASK B GetBooleanv| True | Depth buffer enabled for writing 4.2.2 | depth-buffer
STENCILWRITEMASK A Getlntegerv 1's Stencil buffer writemask 4.2.2 | stencil-buffer
COLORCLEAR VALUE C GetFloatv | 0,0,0,0| Color buffer clear value (RGBA 4.2.3| color-buffer

mode)

DEPTH.CLEAR_VALUE RT Getlntegerv 1 Depth buffer clear value 4.2.3| depth-buffer
STENCIL CLEAR VALUE zZ+ Getlntegerv 0 Stencil clear value 4.2.3 | stencil-buffer

S318V.L 31VIS 29

8ET

(2002 ‘TE YoreN - 14vHa) 0T T'T UOISIBA

S|eXld "8T'9 9|qel

Get Initial o)
Get value Type Cmnd Value Description Sec. Attribute
unpackaLiGNMENT || ZF | Getintegerv 4 Value of UNPACK_ALI GNVENT 3.6.1| pixel-store
PACK ALIGNMENT Z+ | Getintegerv 4 Value of PACK_ALI GNIVENT 4.3.1 | pixel-store

S318V.L 31VIS 29

6€T

(2002 ‘TE YoreN - 14vHa) 0T T'T UOISIBA

SIUIH "6T°9 9|qel

Get Initial
Get value Type Cmnd Value Description Sec. Attribute
PERSPECTIVECORRECTIONHINT Z3 | Getintegerv | DONT_CARE | Perspective correction hint 5.2 hint
POINT.SMOOTHHINT Z3 | Getintegerv | DONT_CARE | Point smooth hint 5.2 hint
LINE_SMOOTHHINT Z3 | Getintegerv | DONT_CARE | Line smooth hint 5.2 hint
FOGHINT Z3 | Getintegerv | DONT_CARE | Fog hint 5.2 hint
GENERATE MIPMAP_HINT Z3 | Getintegerv | DONT_CARE | Mipmap generation hint 5.2 hint

S318V.L 31VIS 29

orT

(2002 ‘TE YoreN - 14vHa) 0T T'T UOISIBA

sanfeA Juapuadaq uoneuswsa|dw] "0z 9 a|geL

Get Minimum
Get value Type Cmnd Value Description Sec. Attribute

MAX LIGHTS A Getlntegerv 8 Maximum number of lights 2121 -

& MAX _CLIP_PLANES zZ+ Getlntegerv 1 Maximum number of user clipping| 2.11 -
planes

MAX _MODELVIEW_STACK_DEPTH A Getlntegerv 16 Maximum model-view stack depth| 2.10.2 -

MAX_PROJECTIONSTACK_DEPTH zZ+ Getlntegerv 2 Maximum projection matrix stack | 2.10.2 -
depth

MAX _TEXTURE STACK DEPTH zZ+ Getlntegerv 2 Maximum number depth of texture| 2.10.2 -
matrix stack

SUBPIXELBITS A Getlntegerv 4 Number of bits of subpixel 3 -
precision in screem,, andy,,

MAX _TEXTURE SIZE zZ+ Getlntegerv 64 Maximum texture image dimension 3.7.1 -

MAX _VIEWPORT.DIMS 2 x ZT | Getintegerv | see 2.10.1 Maximum viewport dimensions 2.10.1 -

S318V.L 31VIS 29

T

(2002 ‘TE YoreN - 14vHa) 0T T'T UOISIBA

("1u092) sanjeA uapuadaq uoneiuawsa|dw] ‘'TZ'9 a|geL

Get Minimum
Get value Type Cmnd Value Description Sec. Attribute
ALIASED_POINT.SIZE RANGE 2 x RT | GetFloatv 1,1 Range (lo to hi) of aliased| 3.3 -
point sizes
SMOOTHPOINT.SIZE RANGE 2 x RT | GetFloatv 1,1 Range (lo to hi) of 3.3 -
(POINT_SIZE.RANGE) antialiased point sizes
ALIASED _LINE WIDTH_RANGE 2 x RT | GetFloatv 11 Range (lo to hi) of aliased| 3.4 -
line widths
SMOOTH.LLINE_WIDTH_RANGE 2 x R | GetFloatv 1,1 Range (lo to hi) of 3.4 -

(v1.1: LINEWIDTH_RANGE)

antialiased line widths

S318V.L 31VIS 29

[A4"

(2002 ‘TE YoreN - 14vHa) 0T T'T UOISIBA

("1u092) sanjeA uapuadaq uoneiuawsa|dwi] ‘'gz'9 a|geL

Get Minimum
Get value Type Cmnd Value Description Sec. Attribute
MAX_TEXTURE.UNITS zZt Getlintegerv 2 Number of texture units | 2.6 -
(not to exceed 32)
SAMPLE BUFFERS zZ+ Getlintegerv 0 Number of multisample | 3.2.1 -
buffers
SAMPLES Z Getlintegerv 0 Coverage mask size 3.2.1 -
COMPRESSEDTEXTURE FORMATS 10 x Z | GetIntegerv - Enumerated compressed 3.7.3 -
texture formats
NUM_COMPRESSEDTEXTURE FORMATS Z Getlintegerv 10 Number of enumerated | 3.7.3 -

compressed texture
formats

S318V.L 31VIS 29

evT

(2002 ‘TE YoreN - 14vHa) 0T T'T UOISIBA

syidaQ |oxid wuspuadaqg uoneiuawsaldw| '£z'9 a|qeL

Get Initial
Getvalue Type Cmnd Value Description Sec. Attribute
zBITS Z+ | Getlntegerv - Number of bits inz color buffer 4 -
componenty is one ofRED,
GREEN, BLUE, or ALPHA
DEPTHBITS Z+ | Getlntegerv - Number of depth buffer planes 4 -
stenciLeits || ZT | Getintegerv - Number of stencil planes 4 -

S318V.L 31VIS 29

144"

(2002 ‘TE YoreN - 14vHa) 0T T'T UOISIBA

snoaue||99sIN 7Z'9 a|qeL

Get Initial . .
Getvalue Type Cmnd Value Description Sec. Attribute
- n X Zg | GetError 0 Current error code(s) 25 -
- nx B - False | True if there is a corresponding 25 -

error

S318V.L 31VIS 29

14

Appendix A

Invariance

The OpenGL ES specification is not pixel exact. It therefaresdnot guarantee an
exact match between images produced by different GL impheatiens. However,
the specification does specify exact matches, in some dases)ages produced
by the same implementation. The purpose of this appendix identify and pro-
vide justification for those cases that require exact matche

A.1 Repeatability

The obvious and most fundamental case is repeated issubaseries of GL com-
mands. For any given GL and framebuffer sta¢etor, and for any GL command,
the resulting GL and framebuffer state must be identicalrvelrer the command is
executed on that initial GL and framebuffer state.

One purpose of repeatability is avoidance of visual attfaghen a double-
buffered scene is redrawn. If rendering is not repeatabil@pping between two
buffers rendered with the same command sequence may restuilble changes
in the image. Such false motion is distracting to the view&mother reason for
repeatability is testability.

Repeatability, while important, is a weak requirement. @aivonly repeata-
bility as a requirement, two scenes rendered with one ($mallygon changed
in position might differ at every pixel. Such a differencehite within the law
of repeatability, is certainly not within its spirit. Addinal invariance rules are
desirable to ensure useful operation.

146

A.2. MULTI-PASS ALGORITHMS 147

A.2 Multi-pass Algorithms

Invariance is necessary for a whole set of useful multi-@dgerithms. Such al-
gorithms render multiple times, each time with a differerit @ode vector, to
eventually produce a result in the framebuffer. Examplethege algorithms in-
clude:

e “Erasing” a primitive from the framebuffer by redrawing éither in a dif-
ferent color or using the XOR logical operation.

¢ Using stencil operations to compute capping planes.

On the other hand, invariance rules can greatly increaseaimglexity of high-
performance implementations of the GL. Even the weak repday requirement
significantly constrains a parallel implementation of thie. Because GL imple-
mentations are required to implement ALL GL capabilitiest just a convenient
subset, those that utilize hardware acceleration are éxqgpdc alternate between
hardware and software modules based on the current GL maderveA strong
invariance requirement forces the behavior of the hardwacesoftware modules
to be identical, something that may be very difficult to aghi€for example, if the
hardware does floating-point operations with differencisi®n than the software).

What is desired is a compromise that results in many comipliaigh-
performance implementations, and in many software vendoossing to port to
OpenGL ES.

A.3 Invariance Rules
For a given instantiation of an OpenGL rendering context:

Rule 1 For any given GL and framebuffer state vector, and for anggiGL com-
mand, the resulting GL and framebuffer state must be idaingiach time the com-
mand is executed on that initial GL and framebuffer state.

Rule 2 Changes to the following state values have no side effdmsu@ge of any
other state value is not affected by the change):

Required:

e Framebuffer contents (all bitplanes)
e The values of matrices other than the top-of-stack matrices
e Scissor parameters (other than enable)

Version 1.1.10 (DRAFT - March 31, 2007)

A.3. INVARIANCE RULES 148

Writemasks (colgrdepth, stencil)

Clear values (colgrdepth, stencil)

Current values (colgrnormal, texture coords)

Material properties (ambiendiffuse, specular, emission, shininess)
Strongly suggested:

e Matrix mode

e Matrix stack depths

¢ Alpha test parameters (other than enable)

e Stencil parameters (other than enable)

e Depth test parameters (other than enable)

e Blend parameters (other than enable)

¢ Logical operation parameters (other than enable)
e Pixel storage

e Polygon offset parameters (other than enables, and excdpesy affect
the depth values of fragments)

Corollary 1 Fragment generation is invariant with respect to the statdues
marked withe in Rule 2.

Corollary 2 The window coordinates (X, y, and z) of generated fragmentalao
invariant with respect to

Required:

e Current values (colgrnormal, texture coords)
e Material properties (ambient, diffuse, specular, emigsghininess)

Rule 3 The arithmetic of each per-fragment operation is invariartept with re-
spect to parameters that directly control it (the paramstérat control the alpha
test, for instance, are the alpha test enable, the alphaftesttion, and the alpha
test reference value).

Corollary 3 Images rendered into different color buffers sharing themedrame-

buffer, either simultaneously or separately using the saammand sequence, are
pixel identical.

Version 1.1.10 (DRAFT - March 31, 2007)

A.4. WHAT ALL THIS MEANS 149

A.4 What All This Means

Hardware accelerated GL implementations are expectedfénllti¢o software op-
eration when some GL state vectors are encountered. Evenddie repeatability
requirement means, for example, that OpenGL ES implenmientatannot apply
hysteresis to this swap, but must instead guarantee thata giode vector im-
plies that a subsequent commaaldiaysis executed in either the hardware or the
software machine.

The stronger invariance rules constrain when the switamfnardware to soft-
ware rendering can occur, given that the software and haedvemderers are not
pixel identical. For example, the switch can be made whenditg is enabled or
disabled, but it should not be made when a change is made bbehéing param-
eters.

Because floating point values may be represented usingatfféormats in
different renderers (hardware and software), many OpenGlstate values may
change subtly when renderers are swapped. This is the tygpatefvalue change
that Rule 1 seeks to avoid.

Version 1.1.10 (DRAFT - March 31, 2007)

Appendix B

Corollaries

The following observations are derived from the body andatier appendixes of
the specification. Absence of an observation from this figté way impugns its
veracity.

1.

The error semantics of upward compatible OpenGL ES m@visimay
change. Otherwise, only additions can be made to upward atibig re-
visions.

. GL query commands are not required to satisfy the sensatitheFlush

or theFinish commands. All that is required is that the queried state Ine co
sistent with complete execution of all previously execuBddcommands.

. Application specified point size and line width must beine¢d as specified

when queried. Implementation dependent clamping affées/alues only
while they are in use.

. The mask specified as the third argumergtencilFuncaffects the operands

of the stencil comparison function, but has no direct eftatthe update of
the stencil buffer. The mask specified ByencilMask has no effect on the
stencil comparison function; it limits the effect of the @pel of the stencil
buffer.

. A material property that is attached to the current coloy €nabling

COLOR.VATERI AL) always takes the value of the current color. Attempts
to change that material property \lidaterial calls have no effect.

. There is no atomicity requirement for OpenGL ES rendegngimands,

even at the fragment level.

150

7.

10.

11.

151

Because rasterization of non-antialiased polygons iist gampled, poly-
gons that have no area generate no fragments when they tegzes and
the fragments generated by the rasterization of “narrowgaans may not
form a continuous array.

. OpenGL ES does not force left- or right-handedness on &ityyabordinates

systems. Consider, however, the following conditions:tij€) object coordi-
nate system is right-handed; (2) the only commands used iipurate the
model-view matrix ar&cale(with positive scaling values onlyRotate, and
Translate; (3) exactly one of eithfrustum or Ortho is used to set the pro-
jection matrix; (4) the near value is less than the far vatwedfepthRange
If these conditions are all satisfied, then the eye coordisgstem is right-
handed and the clip, normalized device, and window cootdiggstems are
left-handed.

. (No pixel dropouts or duplicates.) Let two polygons shemedentical edge

(that is, there exist vertices A and B of an edge of one polygod vertices
C and D of an edge of the other polygon, and the coordinategméx A
(resp. B) are identical to those of vertex C (resp. D), andstage of the the
coordinate transfomations is identical when A, B, C, and & specified).
Then, when the fragments produced by rasterization of bothigpns are
taken together, each fragment intersecting the interiadghefshared edge is
produced exactly once.

The user defined clip planes, the spot directions, antightepositions for
LI GHT: are transformed when they are specified. They are not transfb
when copying a context.

Dithering algorithms may be different for different cpoments. In particu-
lar, alpha may be dithered differently from red, green, aebland an imple-
mentation may choose to not dither alpha at all.

Version 1.1.10 (DRAFT - March 31, 2007)

Appendix C

Profiles

The body of the OpenGL ES specification describes both the mBmmand
Common-Lite profiles. This appendix provides more inforim@atabout the con-
tents of profiles and the differences between them, inctudinmeric precision
issues, supported commands, OpenGL ES -specific extensiodgackaging is-
sues.

C.1 Accuracy Requirements

As described in section 2.1.1, the Common-Lite (CL) profites more relaxed
requirements on arithmetic range and precision than the @amprofile. This
allows CL implementations to use fixed-point arithmetiemtlly, although they
are not required to do so.

C.2 Floating-Point and Fixed-Point Commands and State

The CL profile does not support any of the commands takingifiggioint argu-
ments, such adormal3f. Alternate versions of those commands taking fixed-point
arguments are provided instead. The fixed-point commarelalao supported in
the Common profile to allow Common-Lite applications to rurtlianged in that
profile. A complete list of the floating-point functions faienly in the Common
profile is in table C.1.

Similarly, the CL profile does not support floating-point al@tormatFLQAT)
in vertex arrays or images in client memory. THeXED format should be used
instead. Theé=| XED format is also supported in the Common profile.

Finally, the CL profile is not required to store internal Glat& in floating-
point. When the specification or state tables (see sect®nrilicate state is stored

152

C.3. CORE ADDITIONS AND EXTENSIONS 153

in floating-point, the CL profile may always store it in fixedipt instead. Appli-
cations using the CL profile must call tlietFixedv command, or the equivalent
fixed-point versions of enumerated queries, suclaflightxv, to query such
state.

C.3 Core Additions and Extensions

An OpenGL ES profile consists of two parts: a subset of the QuenGL
pipeline, and some extended functionality that is drawmfeoset of OpenGL ES
-specific extensions to the full OpenGL specification. Eaderesion is pruned
to match the profile’'s command subset and added to the prafikbtiaer a core
addition or a profile extension. Core additions differ fromfile extensions in that
the commands and tokens do not include extension suffixéginrtames.

Profile extensions are further divided into required (maodg and optional
extensions. Required extensions must be implemented &asfaconforming im-
plementation, whereas the implementation of optionalresitas is left to the dis-
cretion of the implementor. Both types of extensions useresibn suffixes as part
of their names, are present in tBXTENSI ONS string, and participate in function
address queries defined in the platform embedding layeniRmbextensions have
the additional packaging constraint, that commands defasepart of a required
extension must also be available as part of a static bindingre commands are
also available in a static binding. The commands comprigimgptional extension
may optionally be included as part of a static binding.

From an API perspective, commands and tokens comprisingesacialition are
indistinguishable from the original OpenGL subset. Howgleincrease applica-
tion portability, an implementation may also implement acaddition as an ex-
tension by including suffixed versions of commands and tskerthe appropriate
dynamic and optional static bindings and the extension narttee EXTENSI ONS
string.

The Common and Common-Lite profiles add subsets
of the CES byt e coor di nat es, OES fi xed_poi nt, OES_si ngl e_pr eci si on
and OES.matri x_get OpenGL ES -specific extensions as
core additions, an@ES_r ead_f or mat , OES_conpr essed_pal et t ed_t ext ur e,
OES_poi nt _si ze_array andOES_poi nt _spri t e as required profile extensions.
All of these extensions are incorporated into the body ofgpecification. The
OES_mat ri x_pal ett e andOES_dr aw.t ext ur e are added as optional profile ex-
tensions, and specified separately in the Khronos Exteri®amistry, on the web
at URL http://www.khronos.org/registry/gles.

Version 1.1.10 (DRAFT - March 31, 2007)

C.3. CORE ADDITIONS AND EXTENSIONS

154

Floating-point commands only

Equivalent fixed-point commands

supported in the Common profile support in both Common and Common-L
AlphaFunc AlphaFuncx
ClearColor ClearColorx
ClearDepthf ClearDepthx
ClipPlanef ClipPlanex

Coloraf Colordx
DepthRangef DepthRangex

Fogf, Fogfv Fogx, Fogxv
Frustumf Frustumx
GetClipPlanef GetClipPlanex
GetFloatv GetFixedv
GetLightfv GetLightxv
GetMaterialfv GetMaterialxv
GetTexEnvfv GetTexEnvxv
GetTexParameterfv GetTexParameterxv

LightModelf, LightModelfv

LightModelx, LightModelxv

Lightf, Lightfv

Lightx, Lightxv

LineWidth LineWidthx
LoadMatrixf LoadMatrixx
Materialf , Materialfv Materialx , Materialxv
MultMatrixf MultMatrixx
MultiTexCoord4f MultiTexCoord4x
Normal3f Normal3x

Orthof Orthox

PointParameterf, PointParameterfv

PointParameterx, PointParameterxv

PointSize

PointSizex

PolygonOffset PolygonOffsetx
Rotatef Rotatex
SampleCoverage SampleCoveragex
Scalef Scalex

TexEnvf, TexEnvfv

TexEnvx, TexEnvxv

TexParameterf, TexParameterfv

TexParameterx, TexParameterxv

Translatef

Translatex

Vertex array command&CplorPointer,
NormalPointer, TexCoordPointer,
andVertexPointer) with typeFLOAT

UsetypeFI XEDinstead

Table C.1: Common and Common-Lite commands.

Version 1.1.10 (DRAFT - March 31, 2007)

C.3. CORE ADDITIONS AND EXTENSIONS

155

The CES quer y mat ri x optional extension in OpenGL ES 1.0 has been dep-
recated in OpenGL ES 1.1. The various matrices in GL can bairodd by calling
GetFixedv or GetFloatv, or by using thedES mat ri x_get core extension.

Extension Name

Common \

Common-Lite \

CES_byt e_coor di nat es

core addition

core addition

CES_f i xed_poi nt

core addition

core addition

CES_si ngl e_preci sion

core addition

n/a

CES_mat ri x_get

core addition

core addition

OES_r ead_f or nat

required extensior

required extensior

CES_conpressed_pal etted_texture

required extensior

required extensior

CES_poi nt _si ze_array

required extensior

required extensior

CES_poi nt sprite

required extensior

required extensior

CES.natrix_palette

optional extension

optional extension

OES_dr aw.t ext ure

optional extension

optional extension

Table C.2: OES Extension Disposition

C.3.1 Byte Coordinates

The CES_byt e_coor di nat es extension allowdyt e data types to be used as
vertex and texture coordinates. The Common/Common-Lidélprsupportdyt e
coordinates in vertex array commands, as described irose2i8.

C.3.2 Fixed Point

The CES fi xed _poi nt extension defines an integer fixed-point data type for ver-
tex attributes and command parameters. The extensionfispdion includes
commands that parallel all OpenGL 1.5 commands with flogbioigt parame-
ters (including commands that support a single paramefs tersion such as
DepthRange PointSize andLineWidth). The subset of commands included in
the Common and Common-Lite profiles matches exactly theesuddsfloating-
point commands included in the Common profile (see secti@j C.

C.3.3 Single-precision Commands

The OES_si ngl e_pr eci si on_commands extension creates new single-precision
parameter command variants of commands that have no suclantear

Version 1.1.10 (DRAFT - March 31, 2007)

C.3. CORE ADDITIONS AND EXTENSIONS 156

(DepthRange Frustum, Ortho, etc.). Only the subset matching the profile feature =
set is included in the Common profile.

DepthRange{clampf n, clampf f)

Frustumf(float I, float r, float b, float t, float n, float f
Orthof (float I, float r, float b, float t, float n, float f)
ClearDepthf(clampf depth)

GetClipPlanef(enum pname, float egn[4])

C.3.4 Compressed Paletted Texture

The OES_conpressed pal etted.texture extension provides a method for
specifying a compressed texture image as a color index imagempanied by
a palette. The extension adds ten new texture internal fisrinaspecify different
combinations of index width and palette color format, agdbsd in section 3.7.3.

C.3.5 Read Format

The OES_read f or mat extension allows implementation-specific pixel type and
format parameters to be queried by an application and us&eadPixelscom-
mands, as described in section 4.3.1

C.3.6 Matrix Palette

The optionalCES_mat ri x_pal et t e extension adds the ability to support vertex
skinning in OpenGL ES. This extension allow OpenGL ES to suipp palette of
matrices. The matrix palette defines a set of matrices threbeaised to transform
a vertex. The matrix palette is not part of the model view Rattack and is
enabled by setting theATRI X_MODE to MATRI X_PALETTE_CES.

Then vertex units use a palette of modelview matrices (where andm are
constrained to implementation defined maxima). Each vérdexa set of. indices
into the palette, and a corresponding set.afeights. Matrix indices and weights
can be changed for each vertex.

When this extension is utilized, the enabled units tramsfeach vertex by the
modelview matrices specified by the vertices’ respectidicies. These results are
subsequently scaled by the weights of the respective undstlzen summed to
create the eyespace vertex.

Version 1.1.10 (DRAFT - March 31, 2007)

C.3. CORE ADDITIONS AND EXTENSIONS 157

C.3.7 Point Sprites

The OES poi nt spri t e extension provides a method for application to draw par-
ticles using points instead of quads, as described in $e8tih This extension also
allows an app to specify texture coordinates that are intatpd across the point
instead of the same texture coordinate used by traditiohgb@nts.

C.3.8 Point Size Array

This OES_poi nt _si ze_ar r ay extension extends how points and point sprites are
rendered by allowing an array of point sizes instead of a firpdt point size given
by PointSize This provides flexibility for applications to do particléfects.

Vertex arrays are extended to include a point size array,easribed in sec-
tion 2.8.

C.3.9 Matrix Get

Many applications require the ability to be able to read then@atrices. OpenGL
ES 1.1 allows applications to read matrices using@e¢Floatv command for the
common profile and th&etFixedvcommand for the common-lite profile.

In cases where the common-lite implementation stores cestand performs
matrix operations internally using floating point (an exdnwould be OpenGL
ES implementations that support JSSR184), the GL cannatrébe floating-point
matrix elements, since the oat data type is not supported by the common-lite
profile. UsingGetFixedvto read matrix data will result in a loss of information.

To address this issue, the new targets
MODELVI EWNATRI X_FLOAT_AS_| NT_BI TS_CES, PRQJECTI ONLMATRI X FLOAT_AS_| NT_BI TS_CES,
and TEXTURE_MATRI X_FLOAT_AS_I NT_BI TS_CES are accepted byetintegery,
as described in section 6.1.2. These tokens allow the Glitiora representation
of the floating-point matrix elements as an array of integacsording to the IEEE
754 floating-point “single format” bit layout.

C.3.10 Draw Texture

This CES_dr aw.t ext ur e extension defines a mechanism for writing pixel rectan-
gles from one or more textures to a rectangular region of¢chees. This capability

is useful for fast rendering of background paintings, bipped font glyphs, and 2D
framing elements in games

Version 1.1.10 (DRAFT - March 31, 2007)

C.4. PACKAGING 158

C.4 Packaging

C.4.1 Header Files

The header file structure is the same as in a full OpenGL bligtan, using

a single header file:gl . h. Additional enumerants/ERSI ONLES_CMx_y and
VERSI ONES CL x_y, wherex andy are the major and minor version numbers
as described in section 6.1.5, are included in the header Titese enumerants
indicate the versions of profiles supported at compile-time

C.4.2 Libraries

Each profile defines a distinct link-library. The library nanmcludes the profile
name ad i bGLES_nn. z wherenn is eitherCMor CL and. z is a platform-
specific library suffix (i.e., a, . so, . | i b, etc.). The symbols for the platform-
specific embedding library are also included in the linkdily. By default, the
library namel i bGLES_nn. z includes EGL entry points. The OpenGL ES li-
brary that does not include EGL entry points will be namhédGLESv1 nn. z.
Availability of static and dynamic function bindings is glarm dependent. Rules
regarding the export of bindings for core additions, regdiprofile extensions, and
optional platform extensions are described in section C.3.

C.4.3 Acknowledgements

The OpenGL ES Common and Common-Lite profiles are the re$utieocon-
tributions of many people, representing a cross sectiohefiesktop, hand-held,
and embedded computer industry. Following is a partialdfsthe contributors,
including the company that they represented at the timeeaf tontribution:
Aaftab Munshi, ATI

Andy Methley, Panasonic

Axel Mamode, Sony Computer Entertainment

Barthold Lichtenbelt, 3Dlabs

Benji Bowman, Imagination Technologies

Borgar Ljosland, Falanx

Brian Murray, Motorola

Bryce Johnstone, Texas Instruments

Carlos Sarria, Imagination Technologies

Version 1.1.10 (DRAFT - March 31, 2007)

C.4. PACKAGING

Chris Tremblay, Motorola

Claude Knaus, Esmertec

Clay Montgomery, Nokia

Dan Petersen, Sun

Dan Rice, Sun

David Blythe 3d4w and HI

David Yoder, Motorola

Doug Twilleager, Sun

Ed Plowman, ARM

Graham Connor, Imagination Technologies
Greg Stoner, Motorola

Hannu Napari, Hybrid

Harri Holopainen, Hybrid

Jacob Strom, Ericsson

Jani Vaarala, Nokia

Jerry Evans, Sun

John Metcalfe, Imagination Technologies
Jon Leech, Silicon Graphics

Kari Pulli, Nokia

Lane Roberts, Symbian

Madhukar Budagavi, Texas Instruments
Mathias Agopian, PalmSource

Mark Callow, HI

Mark Tarlton, Motorola

Mike Olivarez, Motorola

Neil Trevett, 3Dlabs

Nick Triantos, Nvidia

Petri Kero, Hybrid

Petri Nordlund, Bitboys

Phil Huxley, Tao Group

Version 1.1.10 (DRAFT - March 31, 2007)

159

C.4. PACKAGING 160

Remi Arnaud, Sony Computer Entertainment
Robert Simpson, Bitboys

Tero SarkkinenFuturemark

Timo Suoranta, Futuremark

Thomas Tannert, Silicon Graphics

Tomi Aarnio, Nokia

Tom McReynolds, Nvidia

Tom Olson, Texas Instruments

Ville Miettinen, Hybrid Graphics

C.4.4 Document History

version 1.1.10, draft of 2007/01/05 Initial revision of the full specification,
based on the 1.1.09 diff specification.

version 1.1.10, draft of 2007/01/09 Add Khronos copyright page. Remove
COLOR matrix from section 2.10.2. Reorganized compresegtlite language
(section 3.7.3) and moved language specific to compresdetigubtextures into a
new section 3.7.4; added more detail of the format of conga@galetted tex-
tures in memory and specified th@ompressedTexSublmage2bmay not be
called for them. Removed state not present or not exposecpenGL ES , in-
cluding all texture level-specific parameters from sectoh.3, table 6.15 (state
per texture image), and the state table entrie<CfarOR MATERI AL_PARANVETER,
COLOR.MVATERI AL _FACE, TEXTURE.I NTENSI TY_SI ZE, TEXTURE_DEPTH.SI ZE,
DRAWBUFFER, READBUFFER, AUXBUFFERS, DOUBLEBUFFER, STEREOQ,
SMOOTH.POl NT_SI ZE_GRANULARI TY, andSMOOTH.LI NE_W DTH.GRANULARI TY.

version 1.1.10, draft of 2007/01/16 Numerous minor corrections from Tomi
Aarnio - add missing elements to tables (various data typesyt size array ver-

tex array state), remove lingering references to commapritsjtives (polygons),

functionality (texcoord generation, depth and intensagnfat textures, non-two-
dimensional textures, pixel rectangles, bitmaps, inddéaranode, evaluator maps,
attribute stacks, edge flags, point/line polygon mode lalsiists) not in OpenGL

ES, fix numerous typos

Version 1.1.10 (DRAFT - March 31, 2007)

C.4. PACKAGING 161

version 1.1.10, draft of 2007/02/06 Noted in section 2.10.3 that normal vectors
are treated as row vectors transformed by matrix postniigiéifion, which may be
unfamiliar to some graphics programmers. Removed X Windgstedn trademark
information from the copyright pages

version 1.1.10, draft of 2007/03/31 Document scaling of integer to fixed-point
parameters. Polygon smooth mode is not supported. Fronbacidmaterial col-
ors exist in terms of the API, but are constrained to alwaygetthe same val-
ues. General polygons are not supported. Remove referémdesture borders.
Many other minor fixes and clarifications from WG review - sda#hos member
Bugzilla bugs 1247, 1257, 1258, 1259

Version 1.1.10 (DRAFT - March 31, 2007)

Index of OpenGL ES Commands

1,89

ACTIVE_TEXTURE, 18, 90, 118
ActiveTexture, 31, 95

ADD, 91-93

ADD_SIGNED, 93

ALPHA, 68, 73, 76, 91-93, 95, 106, 113,

144
ALPHA _SCALE, 93, 95
ALPHA _TEST, 102
AlphaFunc, 102, 154
AlphaFuncx, 102, 154
ALWAYS, 102-104, 137
AMBIENT, 43
AMBIENT _AND_DIFFUSE, 43
AND, 108
AND _INVERTED, 108
AND_REVERSE, 108
ARRAY _BUFFER, 22-26
ARRAY _BUFFERBINDING, 25
AUX _BUFFERS, 160

BACK, 63, 119, 132
BindBuffer, 22, 25
BindTexture, 89, 90
BLEND, 91, 92, 105, 107
BlendFunc, 105

BLUE, 144
BUFFERSIZE, 23, 24
BUFFERUSAGE, 23, 24
BufferData, 23-25
BufferSubData, 24, 25
BYTE, 19

CCWw, 41,132
CLAMP_TO_EDGE, 82, 83

162

CLEAR, 108

Clear, 110, 111

ClearColor, 110, 154

ClearColorx, 110, 154

ClearDepthf, 110, 154, 156

ClearDepthx, 110, 154

ClearStencil, 110

CLIENT_ACTIVE_TEXTURE, 20, 118

ClientActiveTexture, 20

CLIP_PLANE;, 35

CLIP_PLANEDQ, 35

ClipPlane, 34

ClipPlanef, 154

ClipPlanex, 154

Coilor, 21, 36, 44

Color4, 18

Color4f, 8,18, 154

Color4ub, 18

Color4x, 18, 154

COLORARRAY, 20

COLORARRAY_POINTER, 120

COLORBUFFERBIT, 110, 111

COLORLOGIC.OP, 107

COLOR.MATERIAL, 44, 150

COLORMATERIAL _FACE, 160

COLORMATERIAL _PARAMETER,
160

ColorMask, 109, 110

ColorPointer, 19, 20, 154

COMBINE, 91, 93, 95

COMBINE_ALPHA, 91, 93, 94

COMBINE_RGB, 91, 93, 94

COMPRESSEDTEXTURE.
FORMATS, 78

CompressedTexlmage, 80

INDEX

CompressedTexlmage2D, 78-80
CompressedTexSublmage2D, 80, 82,
160
CONSTANT, 94, 95, 136
CONSTANTATTENUATION, 43
COORDREPLACEOES, 52, 54
COPY, 107, 108, 137
COPY.INVERTED, 108
CopyTeximage, 77
CopyTeximage2D, 76, 77, 86, 111
CopyTexSublmage2D, 77
CULL_FACE, 63
CullFace, 62, 63, 65
CURRENT.TEXTURE.COORDS, 18
Cw, 41

DECAL, 91, 92

DECR, 103

DeleteBuffers, 23

DeleteTextures, 90

DEPTHBUFFERBIT, 110, 111

DEPTHTEST, 104

DepthFunc, 104

DepthMask, 109, 110

DepthRange, 118, 151, 155, 156

DepthRangef, 28, 154, 156

DepthRangex, 28, 154

DIFFUSE, 43

Disable, 33, 35, 38, 44, 50-52, 57, 63,
65, 95, 97, 101-105, 107

DisableClientState, 20

DITHER, 107

DONT_CARE, 116, 140

DOT3.RGB, 93

DOT3.RGBA, 93

DOUBLEBUFFER, 160

DRAW_BUFFER, 160

DrawArrays, 14, 21, 22, 25, 45

DrawElements, 14, 21, 22, 25, 26, 45

DST_ALPHA, 106

DST_.COLOR, 105, 106

DYNAMIC _-DRAW, 23, 24

ELEMENT_ARRAY _BUFFER, 25, 26
EMISSION, 43

163

Enable, 32, 35, 38, 44, 50-52, 57, 63, 65,
95, 97, 101-105, 107, 117

EnableClientState, 20

EQUAL, 102-104

EQUIV, 108

EXP, 97, 98, 129

EXP2, 97

EXTENSIONS, 120, 153

FALSE, 39, 41, 52, 82, 89, 102, 118,
120, 135

FASTEST, 116

Finish, 115, 150

FIXED, 19, 22, 152, 154

FLAT, 45

FLOAT, 19, 22, 125, 126, 152, 154

Flush, 115, 150

FOG, 97

Fog, 97

FOG.COLOR, 97

FOG.DENSITY, 97

FOG.END, 97

FOG.HINT, 116

FOG.MODE, 97, 98

FOG._START, 97

Fogf, 154

Fogfv, 154

Fogx, 154

Fogxv, 154

FRONT, 63, 119

FRONT.AND _BACK, 42, 63

FrontFace, 41, 62

Frustum, 29, 30, 151, 156

Frustumf, 154, 156

Frustumx, 154

GenBuffers, 23
GENERATEMIPMAP, 82, 87, 89
GENERATEMIPMAP_HINT, 116
GenTextures, 90, 120

GEQUAL, 102-104

Get, 18, 28,117, 118
GetBooleanv, 102,117,118, 121
GetBufferParameter, 119
GetBufferParameteriv, 119

Version 1.1.10 (DRAFT - March 31, 2007)

INDEX

GetClipPlane, 119
GetClipPlanef, 154, 156
GetClipPlanex, 154
GetError, 12

GetFixedv, 117, 118, 121, 153-155, 157
GetFloatv, 8, 102, 117, 118, 121, 154,

155, 157

Getintegerv, 50, 111, 117, 118,121, 157

GetLight, 119
GetLightfv, 154
GetLightxv, 153, 154
GetMaterial, 119
GetMaterialfv, 154
GetMaterialxv, 154
GetPointerv, 120
GetString, 120
GetTexEnv, 119
GetTexEnvfv, 154
GetTexEnvxv, 154
GetTexParameter, 119
GetTexParameterfv, 154
GetTexParameterxv, 154
gl.h, 158

GREATER, 102-104
GREEN, 144

Hint, 115

IMPLEMENTATION_COLORREAD_
FORMAT_OES, 111

IMPLEMENTATION_COLORREAD._
TYPEOES, 111

INCR, 103

INTERPOLATE, 93

INVALID _ENUM, 12, 13, 20, 32, 42

INVALID _OPERATION, 13, 69, 73, 76,
79, 80, 82

INVALID _VALUE, 12, 13, 19-21, 24,
28, 31, 42, 51, 52, 57, 66, 73,
74,77-80,82,97,101, 110

INVERT, 103, 108

IsBuffer, 120

IsEnabled, 101, 117, 121

IsTexture, 119, 120

KEEP, 103, 137

164

LEQUAL, 102-104

LESS, 102-104, 137

Light, 42, 43

LIGHTq, 42, 44, 151

LIGHTO, 42

LIGHT _MODEL_AMBIENT, 43

LIGHT_MODEL_TWO_SIDE, 43

Lightf, 154

Lightfv, 154

LIGHTING, 38

LightModel, 42, 43

LightModelf, 154

LightModelfv, 154

LightModelx, 154

LightModelxv, 154

Lightx, 154

Lightxv, 154

LINE_LOOP, 16

LINE_SMOOTH, 57, 62

LINE_SMOOTHHINT, 116

LINE_STRIP, 14

LINEAR, 82, 85, 87-89, 97

LINEAR_ATTENUATION, 43

LINEAR _MIPMAP_LINEAR, 82, 86,
87

LINEAR _MIPMAP_NEAREST, 82, 86

LINES, 16

LineWidth, 57, 154, 155

LineWidthx, 57, 154

Loadldentity, 29

LoadMatrix, 29

LoadMatrixf, 154

LoadMatrixx, 154

LogicOp, 107, 108

LUMINANCE, 68, 71, 73, 76, 91, 92,
113

LUMINANCE _ALPHA, 68, 71, 73, 76,
91, 92,113

Material, 42, 43, 150
Materialf, 154
Materialfv, 154
Materialx, 154
Materialxv, 154
MATRIX _MODE, 156

Version 1.1.10 (DRAFT - March 31, 2007)

INDEX

MATRIX _PALETTE.OES, 156

MatrixMode, 28

MAX _TEXTURE_SIZE, 74

MAX _TEXTURE.UNITS, 13, 18, 19,
22

MODELVIEW, 28, 32

MODELVIEW_MATRIX, 128

MODELVIEW_MATRIX _FLOAT_AS_
INT_BITS_OES, 118, 157

MODULATE, 91-93, 95, 136

MULTISAMPLE, 50, 51, 56, 62, 65,
101,107,108

MultiTexCoord, 20, 21, 32

MultiTexCoord4, 18

MultiTexCoord4f, 154

MultiTexCoord4x, 154

MultMatrix, 29

MultMatrixf, 154

MultMatrixx, 154

NAND, 108

NEAREST, 82, 85, 87, 88

NEARESTMIPMAP_LINEAR, 82, 86—
89

NEAREST.MIPMAP_NEAREST, 82,
86, 88

NEVER, 102-104

NICEST, 116

NO_ERROR, 12

NOOP, 108

NOR, 108

Normal, 21

Normal3, 9, 18

Normal3f, 9, 152, 154

Normal3x, 9, 154

NORMAL_ARRAY, 20

NORMAL_ARRAY _BUFFER
BINDING, 25

NORMAL_ARRAY _POINTER, 120

NORMALIZE, 33

NormalPointer, 19, 20, 25, 154

NOTEQUAL, 102-104

NUM_COMPRESSEDIEXTURE.
FORMATS, 78

OESbytecoordinates, 153, 155

165

OEScompressegbalettedtexture, 153,
155, 156

OESdrawtexture, 153, 155, 157

OESfixed_point, 153, 155

OESmatrix get, 153, 155

OESmatrix palette, 153, 155, 156

OESpointsizearray, 153, 155, 157

OESpointsprite, 153, 155, 157

OESquerymatrix, 155

OESreadformat, 153, 155, 156

OESsingleprecision, 153, 155

OESsingle precisioncommands, 155

ONE, 106, 137

ONE_.MINUS_DST_ALPHA, 106

ONE_.MINUS_DST._COLOR, 105, 106

ONE_MINUS_SRCALPHA, 94, 106

ONE_.MINUS_SRCCOLOR, 94, 105,
106

OPERANDN_ALPHA, 93-95

OPERANDN_RGB, 93-95

OR, 108

OR.INVERTED, 108

OR.REVERSE, 108

Ortho, 29, 31, 151, 156

Orthof, 154, 156

Orthox, 154

OUT_OF.MEMORY, 12, 13, 24

PACK_ALIGNMENT, 112, 139
PALETTE*, 82

PALETTE4*, 81
PALETTE4.R5.G6.B5, 80
PALETTE4R5.G6.B5.0OES, 79, 81
PALETTE4RGBS5.AL, 80
PALETTE4RGB5.A1_0OES, 79, 81
PALETTE4RGBS, 80
PALETTE4RGB8OES, 79, 81
PALETTE4RGBA4, 80
PALETTE4RGBA4.OES, 79, 81
PALETTE4RGBAS, 80
PALETTE4RGBA8.OES, 79, 81
PALETTES8*, 81
PALETTE8R5.G6.B5, 80
PALETTE8R5.G6.B5.OES, 79, 81
PALETTE8RGBS5.AL, 80

Version 1.1.10 (DRAFT - March 31, 2007)

INDEX

PALETTE8RGB5A1_0OES, 79, 81
PALETTE8 RGBS, 80
PALETTE8 RGB8OES, 79, 81
PALETTE8 RGBA4, 80
PALETTE8RGBA4.OES, 79, 81
PALETTE8RGBAS, 80
PALETTE8RGBAS.OES, 79, 81
PERSPECTIVECORRECTIONHINT,
116
PixelStore, 66,112, 114
PixelStorei, 66
POINT_DISTANCE_ATTENUATION,
52
POINT_.FADE_.THRESHOLDSIZE, 52
POINT_SIZE_.ARRAY _OES, 20
POINT_SIZE.ARRAY _POINTER
OES, 120
POINT_SIZE.MAX, 52
POINT_SIZE_MIN, 52
POINT_.SMOOTH, 52, 56
POINT.SMOOTHHINT, 116
POINT_SPRITEOES, 51, 52, 56, 57
PointParameter, 51, 52
PointParameterf, 154
PointParameterfv, 154
PointParameterx, 154
PointParameterxv, 154
POINTS, 14
PointSize, 21, 51, 154, 155, 157
PointSizePointerOES, 19, 20
PointSizex, 51, 154
POLYGON.OFFSETFILL, 65
PolygonOffset, 64, 154
PolygonOffsetx, 64, 154
PopMatrix, 32
POSITION, 43, 119
PREVIOUS, 94, 95, 136
PRIMARY_COLOR, 94
PROJECTION, 28, 32
PROJECTIONMATRIX, 128
PROJECTIONMATRIX _FLOAT_AS_
INT_BITS_OES, 118, 157
PushMatrix, 32

QUADRATIC_ATTENUATION, 43

166

READ_BUFFER, 160

ReadPixels, 66, 68, 76, 111-113, 156

RED, 144

RENDERER, 120

REPEAT, 82, 83, 85, 89, 135

REPLACE, 91-93, 103

RESCALENORMAL, 33

RGB, 68, 69, 71, 73, 76, 79, 81, 91-93,
95, 106, 113

RGB_SCALE, 93, 95

RGBA, 68, 69, 71, 73,76, 79, 81, 91, 92,
111,113

Rotate, 29, 151

Rotatef, 154

Rotatex, 154

SAMPLE ALPHA _TO_COVERAGE,
101

SAMPLE ALPHA _TO_ONE, 101

SAMPLE BUFFERS, 50, 56, 62, 65,
101,107, 108, 110

SAMPLE_ COVERAGE, 101

SAMPLE_ COVERAGEINVERT, 101,
102

SAMPLE_ COVERAGEVALUE, 101,
102

SampleCoverage, 102, 154

SampleCoveragex, 102, 154

SAMPLES, 50, 51

Scale, 29, 30, 151

Scalef, 154

Scalex, 154

Scissor, 100

SCISSORTEST, 101

SET, 108

ShadeModel, 45

SHININESS, 43

SHORT, 19

SMOOTH, 45, 129

SMOOTHLINE WIDTH_
GRANULARITY, 160

SMOOTHPOINT_SIZE
GRANULARITY, 160

SPECULAR, 43

SPOT.CUTOFF, 43

Version 1.1.10 (DRAFT - March 31, 2007)

INDEX

SPOTDIRECTION, 43, 119
SPOTEXPONENT, 43
SRCALPHA, 94, 95, 106, 136
SRCALPHA_SATURATE, 105, 106
SRCCOLOR, 94, 95, 105, 106, 136
SRM_ALPHA, 93-95

SRM_RGB, 93-95
STACK_OVERFLOW, 13, 32
STACK_.UNDERFLOW, 13, 32
STATIC_DRAW, 23, 24
STENCILBUFFERBIT, 110, 111
STENCILTEST, 103

StencilFunc, 103, 150
StencilMask, 109, 110, 150
StencilOp, 103

STEREO, 160

SUBTRACT, 93

TexCoordPointer, 19, 20, 154

TexEnv, 51, 52, 90, 95

TexEnvf, 154

TexEnvfv, 154

TexEnvx, 154

TexEnvxv, 154

Teximage, 77

TexImage2D, 65-68, 72-74, 76-78, 82,
86, 111, 113

TexParameter, 82

TexParameterf, 154

TexParameterfv, 154

TexParameterx, 154

TexParameterxv, 154

TexSublmage, 77

TexSublmage?2D, 66, 76, 77, 80

TEXTURE, 28, 31, 32, 94, 95, 136

TEXTURE, 18

TEXTUREDQO, 18, 22, 32,125, 136

TEXTURE2D, 72, 76, 77, 82, 89, 90,
95, 119, 134

TEXTURE.COORDARRAY, 20

TEXTURE.COORDARRAY _
POINTER, 120

TEXTURE.DEPTHSIZE, 160

TEXTURE_ENYV, 90, 119

TEXTURE.ENV_COLOR, 91

167

TEXTURE_ENV_MODE, 91, 95

TEXTURELINTENSITY_SIZE, 160

TEXTURE.MAG _FILTER, 82, 88, 89

TEXTURE.MATRIX, 128

TEXTURE.MATRIX _-FLOAT_AS_INT_
BITS_.OES, 118, 157

TEXTUREMIN _FILTER, 82, 85, 86,
88, 89

TEXTURE.WRAP.S, 82, 83, 85

TEXTURE.WRAP_T, 82, 83, 85

Translate, 29, 30, 151

Translatef, 154

Translatex, 154

TRIANGLE_FAN, 17

TRIANGLE_STRIP, 16

TRIANGLES, 17

TRUE, 41, 52, 54, 82,87, 102, 109, 118,
120

UNPACK_ALIGNMENT, 66, 69, 139

UNSIGNED.BYTE, 19, 22, 68, 81, 111,
114

UNSIGNED.SHORT, 22, 70

UNSIGNED.SHORT4.4.4 4,
81,114

UNSIGNED.SHORT.5.5.5.1,
81,114

UNSIGNED.SHORT.5.6.5, 68-70, 81,
114

68-70,

68-70,

VENDOR, 120

VERSION, 120
VERSIONEES CL x_y, 158
VERSIONES CM_x_y, 158
VERTEX_ARRAY, 20
VERTEX_ARRAY _POINTER, 120
VertexPointer, 19, 20, 154
Viewport, 28

X, 158
XOR, 108

y, 158

ZERO, 103, 106, 137

Version 1.1.10 (DRAFT - March 31, 2007)

