Copyright(©) 1992-2006 Silicon Graphics, Inc.

This document contains unpublished information of
Silicon Graphics, Inc.

This document is protected by copyright, and contains m#dion proprietary to
Silicon Graphics, Inc. Any copying, adaptation, distribat public performance,
or public display of this document without the express writconsent of Silicon
Graphics, Inc. is strictly prohibited. The receipt or passen of this document
does not convey any rights to reproduce, disclose, or big#iits contents, or to
manufacture, use, or sell anything that it may describe,hnle/or in part.

U.S. Government Restricted Rights Legend

Use, duplication, or disclosure by the Government is sulierestrictions set forth
in FAR 52.227.19(c)(2) or subparagraph (c)(1)(ii) of thgRs in Technical Data
and Computer Software clause at DFARS 252.227-7013 ardgimilar or succes-
sor clauses in the FAR or the DOD or NASA FAR Supplement. Ullipbied rights
reserved under the copyright laws of the United States. r@otar/manufacturer is
Silicon Graphics, Inc., 1600 Amphitheatre Parkway, Moimiéew, CA 94043.

OpenGL is a registered trademark of Silicon Graphics, Inc

1.3. OPENGL ES PROFILES 2

moves a great deal of redundant and legacy functionalitylevetuding a few new
features. The differences between OpenGL ES and OpenGLoamescribed in
detail in this specification; however, they are summarizeé icompanion doc-
ument tittedOpenGL ES Common/Common-Lite Profile Specification (diffar
specification)

1.3 OpenGL ES Profiles

This specification described twaofilesfor OpenGL ES : Common and Common-
Lite. While many commands are shared by both profiles, some codsraaa only
supported by one profile.

The Common-Lite profile differs from the Common profile pririhain be-
ing targeted at a simpler class of graphics system not stipgdrigh-performance
floating-point calculations. The Common-Lite profile sugpoonly commands
taking fixed-point arguments, while the Common profile alsmuides many equiv-
alent commands taking floting-point arguments

Specific differences between the two profiles, including ansary of
command®only supported in the Common profile, are documented in Agpe@
and in appropriate sections of the specification.

1.4 Programmer’s View of OpenGL ES

To the programmer, OpenGL ES is a set of commands that allewkcification
of geometric objects in two or three dimensions, togethaghwbmmands that
control how these objects are rendered into the framebufipenGL ES provides
an immediate-mode interface, meaning that specifying gecblcauses it to be
drawn.

A typical program that uses OpenGL ES begins with calls tanape&vindow
into the framebuffer into which the program will draw. Theralls are made to
allocate an OpenGL ES context and associate it with the windbese steps may
be performed using a companion API such as the Khronos Natatéorm Graph-
ics Interface (EGL), and are documented separatélgce a context is allocated,
the programmer is free to issue OpenGL ES commands. Sonsearallused to
draw simple geometric objects (i.e. points, line segmeats] polygons), while
others affect the rendering of these primitives includiogvtihey are lit or colored
and how they are mapped from the user’s two- or three-dimbeasimodel space
to the two-dimensional screen. There are also calls whidradp directly on the
framebuffer, such as reading pixels

Version 1.1.10 (DRAFT - March 31, 2007)

2.4. BASIC GL OPERATION 9

| Letter | Correspondingal Type |

i i nt

X fixed
f fl oat
ub | ubyte
ui ui nt

Table 2.1: Correspondence of command suffix letters to Guraemnt types. Refer
to Table 2.2 for definitions of the GL types.

For example,
voi d Normal3{xf}(T arg);
indicates the two declarations

voi d Normal3f(fl oat argl, fl oat arg2, fl oat arg3);
voi d Normal3x(fi xed argl, fixedarg2, fixedarg3);

Arguments whose type is fixed (i.e. not indicated by a suffixtmcommand)
are of one of the 13 types (or pointers to one of these) surastin Table 2.2.

The mapping of GL data types to data types of a specific largybagling are
part of the language binding definition and may be platfoepahdent. Type con-
version and type promotion behavior when mixing actual amoh&l arguments of
different data types are specific to the language bindingpaitfiorm. For exam-
ple, the C language includes automatic conversion betwaeger and floating-
point data types, but does not include automatic convelsatween the nt and
fixed, orfl oat andfi xed GL types since théi xed data type is not a dis-
tinct built-in type. Regardless of language binding, greumtype converts to
fixed-point without scaling, and integer types are conekttefixed-point by mul-
tiplying by 216,

2.4 Basic GL Operation

Figure 2.1 shows a schematic diagram of the GL. Commands #et&L on the
left. Some commands specify geometric objects to be drawitewthers control
how the objects are handled by the various stages.

The first stage operates on geometric primitives descrilyegetices: points,
line segments, and triangles. In this stage vertices ansfttemed and lit, and

Version 1.1.10 (DRAFT - March 31, 2007)

2.4. BASIC GL OPERATION 10

GL Type Minimum | Description
Bit Width

bool ean 1 Boolean
byte 8 Signed binary integer
ubyt e 8 Unsigned binary integer
short 16 Signed 2's complement binary integer
ushort 16 Unsigned binary integer
i nt 32 Signed 2's complement binary integer
ui nt 32 Unsigned binary integer
fixed 32 Signed 2’s complement 16.16 scaled

integer
cl anmpx 32 16.16 scaled integer clamped[th 1]
si zei 32 Non-negative binary integer size
enum 32 Enumerated binary integer value
intptr ptrbits | Signed 2's complement binary integer
si zei ptr ptrbits Non-negative binary integer size
bitfield 32 Bit field
fl oat 32 Floating-point value
cl anpf 32 Floating-point value clamped {0, 1]

Table 2.2: GL data types. GL types are not C types. Thus, famgte, GL
typei nt is referred to asaLi nt outside this document, and is not necessarily
equivalent to the C typént. An implementation may use more bits than the
number indicated in the table to represent a GL type. Coirgetpretation of
integer values outside the minimum range is not required;eher.

ptrbits is the number of bits required to represent a pointer typeatler words,
typesi nt pt r andsi zei pt r must be sufficiently large as to store any address.

Version 1.1.10 (DRAFT - March 31, 2007)

2.6. PRIMITIVES AND VERTICES 13

Error Description Offending com-
mand ignored?
| NVALI D.ENUM enumargument out of range Yes
| NVALI D.VALUE Numeric argument out of range| Yes
| NVALI D_.OPERATI ON || Operation illegal in current state Yes
STACK_OVERFLOW Command would cause a stackres
overflow
STACK_UNDERFLOW Command would cause a stagkres
underflow
OUT_OF_MEMORY Not enough memory left to exg- Unknown
cute command

Table 2.3: Summary of GL errors

Finally, if memory is exhausted as a side effect of the exenuif a command,
the errorOUT_OF_MEMORY may be generated. Otherwise errors are generated only
for conditions that are explicitly described in this spesfion.

2.6 Primitives and Vertices

In the GL, geometric objects are drawn by specifying a sesfesoordinate sets
that include vertices and optionally normals, texture dowates, and colors. Co-
ordinate sets are specified using vertex arrays (see sei)n There are seven
geometric objects that are drawn this way: points (inclgdmint sprites), con-
nected line segments (line strips), line segment loopsaraggd line segments
triangle strips, triangle fans, and separated triangles.

Each vertex is specified with two, three, or four coordinatés addition, a
current norma] multiple current texture coordinate setandcurrent colormay be
used in processing each vertex. Normals are used by the Gghting calcula-
tions; the current normal is a three-dimensional vector thay be set by sending
three coordinates that specify it. Texture coordinatesrd@he how a texture im-
age is mapped onto a primitive. Multiple sets of texture dowtes may be used
to specify how multiple texture images are mapped onto aipiven The number
of texture units supported is implementation dependeniniugt be at least two.
The number of texture units supported can be obtained byyouethe value of
MAX_TEXTURE_UNI TS.

A color is associated with each vertex. This color is eitregddl on the current
color or produced by lighting, depending on whether or nghting is enabled.

Version 1.1.10 (DRAFT - March 31, 2007)

2.6. PRIMITIVES AND VERTICES 14

Texture coordinates are similarly associated with eachexer Multiple sets of
texture coordinates may be associated with a vertex. F@@reummarizes the as-
sociation of auxiliary data with a transformed vertex toguoe gorocessed vertex

The current values are part of GL state. \ertices, normaisg, taxture co-
ordinates are transformed. Color may be affected or redldmelighting The
processing indicated for each current value is applied dhevertex that is sent to
the GL.

The methods by which vertices, normals, texture coordsated color are sent
to the GL, as well as how normals are transformed and how vertices apped to
the two-dimensional screen, are discussed later.

Before color has been assigned to a vertbg state required by a vertex is the
vertex’s coordinates, its normal, the current materiapperties (see section 2.12.2),
and its multiple texture coordinate sets. Because cologasent is done vertex-
by-vertex, a processed vertex comprises the vertex's auates, its assigned color
and its multiple texture coordinate sets.

Figure 2.3 shows the sequence of operations that buitfsrative (point, line
segment, or triangle) from a sequence of vertices. Afterimipive is formed, it
is clipped to a viewing volume. This may alter the primitive altering vertex
coordinates, texture coordinates, and colorthe case of line and triangle primi-
tives, clipping may insert new vertices into the primitivehe vertices defining a
primitive to be rasterized have texture coordinates andrassociated with them

2.6.1 Primitive Types

A sequence of vertices is passed to the GL using the comnaraigArrays or
DrawElements (see section 2.8). There is no limit to the number of vertites
may be specified, other than the size of the vertex arrays.

The modeparameter of these commands determines the type of pranitiy
be drawn using these coordinate sets. The types, and thesporrdingmode
parameters, are:

Points. A series of individual points may be specified witihodePO NTS.
Each vertex defines a separate point or point sprite

Line Strips. A series of one or more connected line segments may be sjgkcifie
with modeLl NE_STRI P. At least two vertices must be provided. In this case, the
first vertex specifies the first segment’s start point whikeshcond vertex specifies
the first segment’s endpoint and the second segment’s stiautt gn general, the
ith vertex (fori > 1) specifies the beginning of thith segment and the end of the
1 — 1st. The last vertex specifies the end of the last segment.lyfane vertex is
specified, then no primitive is generated.

Version 1.1.10 (DRAFT - March 31, 2007)

2.8. VERTEX ARRAYS 19

current texture coordinatest, r, andg. The initial current color iR, G, B, A) =
(1,1,1,1). The initial current normal has coordinatés 0, 1). The initial values
of s, ¢, andr of the current texture coordinates for each texture unizare, and
the initial value ofq is one.

2.8 \ertex Arrays

Vertex data is placed into arrays stored in the client’s asgslrspace (described
here) or in the server’s address space (described in se&@nBlocks of data in
these arrays may then be used to specify multiple geometrigtives through the
execution of a single GL command. The client may specify dpdoplus the value

of MAX_ TEXTURE_UNI TS arrays: one each to store vertex coordinates, normals,
colors, point sizes, and one or more texture coordinate $étscommands

voi d VertexPointer(i nt size enumtype si zei stride
voi d *pointer);

voi d NormalPointer(enumtype si zei stride
voi d *pointer);

voi d ColorPointer(i nt size enumtype si zei stride
voi d *pointer);

voi d PointSizePointerOES enumtype si zei stride
voi d *pointer);

voi d TexCoordPointer(i nt size enumtype si zei stride
voi d *painter);

describe the locations and organizations of these arrayise&ch commandype
specifies the data type of the values stored in the asiag.when present, indicates
the number of values per vertex that are stored in the arragaBse normals are
always specified with three values and point sizes are alwpgsified with one
value, NormalPointer and PointSizePointerOEShave nosizeargument. Table
2.4 indicates the allowable values feizeandtype (when present). Faiypethe
valuesBYTE, UNSI GNED_BYTE, SHORT, FI XED, andFLQOAT, indicate typedyt e,
ubyt e,short,fixed, andf | oat, respectively. The errarNVALI D_-VALUE is
generated ikizeis specified with a value other than that indicated in thegtabl

The one, two, three, or four values in an array that corredpiora single vertex
comprise an arraglement The values within each array element are stored se-
guentially in memory. Ifstrideis specified as zero, then array elements are stored

Version 1.1.10 (DRAFT - March 31, 2007)

2.8. VERTEX ARRAYS 21

When an array elementis transferred to the GL by th®rawArrays or
DrawElementscommands, each enabled array is treated differently.

For the vertex array, i§izeis two then ther andy coordinates of the vertex are
specified by the array; theandw coordinates are implicitly set to zero and one,
respectively. Ifsizeis three thent, y, andz are specified and is implicitly set to
one. Ifsizeis four then all coordinates are specified, allowing the dlidim of an
arbitrary point in projective space.

For the color array, ifizeis three then thel component is implicitly set to 1.
If sizeis four then all components are specified. If the color arseagat enabled,
then the current color defined by tkimlor commands is used.

For the normal array, all three coordinates are always &pdciByte, short,
or integer values are converted to floating-point valuesdiated for the corre-
sponding (signed) type in table 2.7. If the normal array is not enaptedn the
current normal defined by tidormal commands is used.

For the point size array, the single size is always speciffatie point size ar-
ray is not enabled, then the current point size defineBdintSize(see section 3.3)
is used

For the texture coordinate arrayssiteis two then thes andt coordinates are
specified and the andq coordinates are implicitly set to zero and one, respegtivel
If sizeis three thers, t, andr are specified and is implicitly set to one. Ifsizeis
four then all coordinates are specified. If a texture co@tdirarray is not enabled,
then the current texture coordinate defined by MhdtiTexCoord commands is
used.

The command

voi d DrawArrays (enummode i nt first, si zei count);

constructs a sequence of geometric primitives by sucaadgstvansferring ele-
ments first through first + count — 1 of each enabled array to the Ginode
specifies what kind of primitives are constructed, as definesgction 2.6.1.

The current color, normal, point size, and texture coordisaeach become
indeterminate after the execution DrawArrays, if the corresponding array is
enabled. Current values corresponding to disabled arne@yaa modified by the
execution ofDrawArrays.

Specifying first < 0 results in undefined behavior. Generating the error
I NVALI D_VALUE is recommended in this case.

The command

voi d DrawElementd enummode si zei count enumtype
voi d *indices);

Version 1.1.10 (DRAFT - March 31, 2007)

2.9. BUFFER OBJECTS 22

constructs a sequence of geometric primitives by sucaagsivansferring the
countelements whose indices are storedindicesto the GL. Theith element
transferred byDrawElementswill be taken from elemenindices[i] of each en-
abled arraytypemust be one oINSI GNED_BYTE or UNSI GNED_SHORT, indicating
that the values iindicesare indices of GL typeibyt e or ushort , respectively.
modespecifies what kind of primitives are constructed; it acedpte same values
as themodeparameter oDrawArrays .

The current color, normal, point size, and texture coordisare each indeter-
minate after the execution BfrawElements if the corresponding array is enabled.
Current values corresponding to disabled arrays are notfireddby the execution
of DrawElements

If the number of supported texture units (the valud®X_TEXTURE_UNI TS) is
k, then the client state required to implement vertex arraysists of an integer for
the client active texture unit selectdrs k£ boolean valuest + k£ memory pointers,

4 + k integer stride valuesi + k& symbolic constants representing array types, and
2 + k integers representing values per element. In the init&iesthe client active
texture unit selector iIIEXTUREO, the boolean values are each false, the memory
pointers are each null, the strides are each zero, and ggeirgt representing values
per element are each four. The array types are €aciAT for the Common profile
andFI XeD for the Common-Lite profile.

2.9 Buffer Objects

The vertex data arrays described in section 2.8 are storetleimt memory. It is
sometimes desirable to store frequently used client datdy as vertex array data,
in high-performance server memory. GL buffer objects pleva mechanism that
clients can use to allocate, initialize, and render fromhsumemory.

The name space for buffer objects is the unsigned integeitb, 2ero re-
served for the GL. A buffer object is created by binding an sedi name to
ARRAY_BUFFER. The binding is effected by calling

voi d BindBuffer (enumtarget ui nt buffer);

with targetset toARRAY_BUFFER andbuffer set to the unused name. The resulting
buffer object is a new state vector, initialized with a zerped memory buffer, and
comprising the state values listed in Table 2.5.

BindBuffer may also be used to bind an existing buffer object. If the liénd
successful no change is made to the state of the newly boufedt bbject, and any
previous binding tdargetis broken.

Version 1.1.10 (DRAFT - March 31, 2007)

2.9. BUFFER OBJECTS 25

2.9.1 \Vertex Arrays in Buffer Objects

Blocks of vertex array data may be stored in buffer objectéhwhe same for-
mat and layout options supported for client-side verterysmr However, it is ex-
pected that GL implementations will (at minimum) be optiedzor data with all
components represented falsoat (for the Common profile) of i xed (for the
Common-Lite profile), as well as for color data with compatserepresented as
ubyt e.

The client state associated with each vertex array typeded a buffer object
binding point The commands that specify the locations and organizatibwsrtex
arrays copy the buffer object name that is boundR®AY_BUFFER to the binding
point corresponding to the vertex array of the type beingiigel. For example,
the NormalPointer command copies the value ARRAY_BUFFER.BI NDI NG (the
queriable name of the buffer binding corresponding to tingeieARRAY_BUFFER)
to the client state variablSORVMAL_ARRAY_BUFFER BI NDI NG.

Rendering command3rawArrays andDrawElementsoperate as previously
defined, except that data for enabled vertaxays are sourced from buffers if the
array’s buffer binding is non-zero. When an array is souriteth a buffer object,
the pointer value of that array is used to compute an offediasic machine units,
into the data store of the buffer object. This offset is coteduby subtracting a
null pointer from the pointer value, where both pointers taeated as pointers to
basic machine units

It is acceptable for vertexarrays to be sourced from any combination of client
memory and various buffer objects during a single rendeoiperation.

2.9.2 Array Indices in Buffer Objects

Blocks of array indices may be stored in buffer objects with same format op-
tions that are supported for client-side index arrays. idijt zero is bound to
ELEMENT_ARRAY_BUFFER, indicating thatDrawElementsis to source its indices
from arrays passed as tivalicesparameters.

A buffer object is bound t@&LEMENT_ARRAY_BUFFER by calling BindBuffer
with targetset toEL EMENT _ARRAY_BUFFER, andbufferset to the name of the buffer
object. If no corresponding buffer object exists, one isiatized as defined in
section 2.9.

The commandBufferData and BufferSubData may be used witharget

2To resume using client-side vertex arrays after a buffeectbhas been bound, calind-
Buffer (ARRAY_BUFFER,0) and then specify the client vertex array pointer usiregappropriate
command from section 2.8

Version 1.1.10 (DRAFT - March 31, 2007)

2.10. COORDINATE TRANSFORMATIONS 33

and
voi d Disablgl enumtarget);

with target equal toRESCALE_NORVMAL or NORVALI ZE. This requires two bits of
state. The initial state is for normals not to be rescaledoomalized.

If the model-view matrix isM, then the normal is transformed to eye coordi-
nates by3

(TL$/ ny/ nz/ q/):(n$ Ny Ny Q)'Mil

T
where, if Z are the associated vertex coordinates, then
w
0, w =0,
xr
4= —(ng Ny n.)| vy (2.1)
- = , w#0

Implementations may choose instead to transformp n, n.) to eye coor-
dinates using

(na' ny' nt)=(ny ny nz)-Mu_1

where M, is the upper leftmost 3x3 matrix taken froid.
Rescale multiplies the transformed normals by a scaleifacto

(nx” nyl/ nzl/) — f (nx/ ny/ nzl)
If rescaling is disabled, thefi = 1. If rescaling is enabled, thehis computed as

1

Vms1? + maa? + mg3

2

m;; denotes the matrix element in roinand columnj of M ~!, numbering the
topmost row of the matrix as row 1 and the leftmost column dsroo 1
Note that if the normals sent to GL were unit length and the ehwtew matrix
uniformly scales space, then rescale makes the transfonardals unit length.
Alternatively, an implementation may choose f as

Here, normals are treated as row vectors and transformeddtynpltiplication by the inverse of
the transformation matrixif normals are treated as column vectors, then the trameftion would
instead be performed by premultiplying the normal by thesise transposéy/ ~ 7.

Version 1.1.10 (DRAFT - March 31, 2007)

2.11. CLIPPING 35

The value of the first argumenp, is a symbolic constanGL| P_PLANE:, wherei
is an integer between 0 and— 1, indicating one of: client-defined clip planes.
eqgnis an array of four values. These are the coefficients of aepigquation in
object coordinatespq, p2, p3, andpy (in that order). The inverse of the current
model-view matrix is applied to these coefficients, at theetithey are specified,
yielding

(i ph Py Pi)=(p1 p2 p3 pa) M

(where M is the current model-view matrix; the resulting plane eturmais unde-
fined if M is singular and may be inaccuratelif is poorly-conditioned) to obtain
the plane equation coefficients in eye coordinates. All {goivith eye coordinates
(Ze Ye 2e we)T that satisfy

(p1 Py p3 D))

lie in the half-space defined by the plane; points that do atisfy this condition
do not lie in the half-space.

Client-defined clip planes are enabled with the genErieble command and
disabled with theDisable command. The value of the argument to either com-
mand isCLI P_.PLANE; wherei is an integer between 0 and specifying a value
of i enables or disables the plane equation with indexThe constants obey
CLI P_.PLANE; = CLI P_.PLANEQ + .

If the primitive under consideration is a point, then clippipasses it un-
changed if it lies within the clip volume; otherwise, it issdarded.

If the primitive is a point sprite, it is normally clipped againt. If the point
would normally be clipped, but some of the fragments resglfrom point sprite
rasterization would otherwise be visible, implementationay choose to scissor
fragments resulting from rasterization, instead of clifgpthe entire primitivé.

If the primitive is a line segment, then clipping does nothta it if it lies en-
tirely within the clip volume and discards it if it lies ergly outside the volume.
If part of the line segment lies in the volume and part liessmid, then the line
segment is clipped and new vertex coordinates are compatezh& or both ver-
tices. A clipped line segment endpoint lies on both the nagline segment and
the boundary of the clip volume.

This clipping produces a valu@, < ¢ < 1, for each clipped vertex. If the
coordinates of a clipped vertex aReand the original vertices’ coordinates dpe

“This results in smooth transitions as point sprites move thaesedge of the clip volume, while
the normal behavior causes “popping” of the point sprite.

Version 1.1.10 (DRAFT - March 31, 2007)

2.12. COLORS AND COLORING 37

[0,2K-1] — Convert to o
[0.0,1.0] Current [, =0,
Clamp to
RGBA _ O o 20]
[_2k 2|<_1]_> Convert to o Color Lighting [#=O .0, 1.
' [-1.0,1.0] o *
float
grs———— S (I S — i
Clipping
Convert to L Flatshade?
fixed—point A :
v Primitive |
' : Clipping !

Figure 2.6. Processing of colors. See Table 2.7 for thepnégation ofk.

GL Type | Conversion |

ubyte c/(28 —1)
byte (2c+1)/(28 - 1)
ushort c/(2'0 — 1)
short (2c+1)/(2% —1)
fixed /216

float c

Table 2.7: Component conversions. Color and normamponentsd) are con-
verted to an internal floating-point representatigh), (Using the equations in this
table. All arithmetic is done in the internal floating-pofiermat These conver-
sions apply to components specified as parameters to GL codsvand to com-
ponents in pixel data. The equations remain the same evée iintiplemented
ranges of the GL data types are greater than the minimumrestjtanges. (Refer
to table 2.2)

Version 1.1.10 (DRAFT - March 31, 2007)

2.12. COLORS AND COLORING 38

of the primitive are to have the same colors. Finally, if arptive is clipped, then
colors (and texture coordinates) must be computed at theegrintroduced or
modified by clipping.

2.12.1 Lighting

GL lighting computes colors for each vertex sent to the GLisThfiaccomplished
by applying an equation defined by a client-specified lightimodel to a collection
of parameters that can include the vertex coordinates, dbedmates of one or
more light sources, the current normal, and parametersidgfihe characteristics
of the light sources and a current material.

Lighting is turned on or off using the generitnable or Disable commands
with the symbolic value.l GHTI NG. If lighting is off, the current color is assigned
to the vertex color. If lighting is on, the color computdbm the current lighting
parameters is assigned to the vertex color.

Lighting Operation

A lighting parameter is of one of five types: color, positiatirection, real, or
boolean. A color parameter consists of four floating-pogiues, one for each of
R, G, B, and A, in that order. There are no restrictions on tlmsvable values for
these parameters. A position parameter consists of foulirfp@oint coordinates
(z, v, z, andw) that specify a position in object coordinates (hay be zero,
indicating a point at infinity in the direction given hy, ¢y, andz). A direction
parameter consists of three floating-point coordinates,(andz) that specify a
direction in object coordinates. A real parameter is onetifigapoint value. The
various values and their types are summarized in Table 28 r&sult of a lighting
computation is undefined if a value for a parameter is spekifiat is outside the
range given for that parameter in the table.

There aren light sources, indexed by= 0, ...,n—1. (n is an implementation
dependent maximum that must be at least 8.) Note that theltetdues ford,;;
ands,y; differ for s = 0 andi > 0.

Before specifying the way that lighting computes colors, imteoduce oper-
ators and notation that simplify the expressions involvéfdc; andc, are col-
ors without alpha where; = (r1,91,b1) andce = (79, g2, b2), then define
c1 * co = (r17r2,9192,b1b2). Addition of colors is accomplished by addition of
the components. Multiplication of colors by a scalar mean#iplying each com-
ponent by that scalar. H; andd, are directions, then define

di ©dy = max{d1 -do, 0}

Version 1.1.10 (DRAFT - March 31, 2007)

2.12. COLORS AND COLORING 41

(PoiiV © 8a1i)*rti, cppi # 180.0, Py V © 813 > cos(cy;),
spot; = 0.0, cri 7 180.0, Pplig ® Sai < COS(C,«“),(ZB)
1.0, Crl; — 180.0.

All computations are carried out in eye coordinates. Ligiptis computed for a
viewer situated at0, 0, — oo); the OpenGL ES lighting model does not support
a local viewer

The value of A produced by lighting is the alpha value asgediavithd.,,.

Results of lighting are undefined if the, coordinate { in eye coordinates) of
V is zero.

Lighting may operate itwo-sidedmode {,; = TRUE), in which afront color
and aback color are computed using the same material parameterse(thero
way to specify different front and back material parameter®penGL ES), but
replacingn with —n in the case of the back cololf ¢;,, = FALSE, then the back
color and front color are both assigned the color computéthus. "

The selection between back color and front color dependsi@mptimitive of
which the vertex being lit is a part. If the primitive is a pbior a line segment,
the front color is always selected. If it is a polygon, thea fielection is based on
the sign of the (clipped or unclipped) polygon’s signed areaputed in window
coordinates. One way to compute this area is

1l . o
A= Tl T Yo (2.6)
=0

where z!, andy!, are thez andy window coordinates of théth vertex of the
n-vertex polygon (vertices are numbered starting at zer@twposes of this com-
putation) and & 1 is (i + 1) mod n. The interpretation of the sign of this value is
controlled with

voi d FrontFace(enumdir);

Settingdir to CCW(corresponding to counter-clockwise orientation of thejgcted
polygon in window coordinates) indicates thatif< 0, then the color of each
vertex of the polygon becomes the back color computed fdrubeex while if
a > 0, then the front color is selected. dir is CW thena is replaced by-a in the
above inequalities. This requires one bit of state; iritjal indicatesCCW

2.12.2 Lighting Parameter Specification

Lighting parameters are divided into three categories:enwltparameters, light
source parameters, and lighting model parameters (see Za&8)l. Sets of lighting
parameters are specified with

Version 1.1.10 (DRAFT - March 31, 2007)

Chapter 3

Rasterization

Rasterization is the process by which a primitive is coratb a two-dimensional
image. Each point of this image contains such informatiorasr and depth.
Thus, rasterizing a primitive consists of two parts. Thet fsgo determine which
squares of an integer grid in window coordinates are occlupiethe primitive.
The second is assigning a color and a depth value to each guates The results
of this process are passed on to the next stage of the GLrgmgmént operations),
which uses the information to update the appropriate lonatin the framebuffer.
Figure 3.1 diagrams the rasterization process.

A grid square along with its parameters of assigned colofdepth), and tex-
ture coordinates is called feagment the parameters are collectively dubbed the
fragment'sassociated dataA fragment is located by its lower left corner, which
lies on integer grid coordinates. Rasterization operat@also refer to a fragment’s
center which is offset by(1/2,1/2) from its lower left corner (and so lies on
half-integer coordinates).

Grid squares need not actually be square in the GL. Rasienzailles are not
affected by the actual aspect ratio of the grid squares.|®igif non-square grids,
however, will cause rasterized points and line segmentgppear fatter in one
direction than the other. We assume that fragments are esgsiace it simplifies
antialiasing and texturing.

Several factors affect rasterization. Points may be givifferothg diameters
and line segments differing widths. A point or line segmerynbe antialiased
using pixel coverage values (see section 3.2), but polygdialesing using cov-
erage values is not supported. Multisampling must be useakterize antialiased
polygons (see section 3.2.1)

a7

3.1. INVARIANCE 48

Point

/ Rasterization \
Line -

From
Primitive — se———]
Assembly

Rasterization Texturing

\ Triangle

Rasterization

y

Fog = Fragments

Figure 3.1. Rasterization.

3.1 Invariance

Consider a primitivey’ obtained by translating a primitiyethrough an offsetz, y)

in window coordinates, where andy are integers. As long as neithgrnor p is

clipped, it must be the case that each fragmg&rroduced fronyp’ is identical to
a corresponding fragmerjt from p except that the center ¢f is offset by(z, y)

from the center off.

3.2 Antialiasing

Antialiasing of a point or line is effected as followthe R, G, and B values of the |
rasterized fragment are left unaffected, but the A valueuttiplied by a floating-
point value in the rangp), 1] that describes a fragment’s screen pixel coverage. The
per-fragment stage of the GL can be set up to use the A valdernd the incoming
fragment with the corresponding pixel already present enftamebuffer.

The details of how antialiased fragment coverage values@rguted are dif-
ficult to specify in general. The reason is that high-quadityialiasing may take
into account perceptual issues as well as characteristitgeanonitor on which
the contents of the framebuffer are displayed. Such detaitot be addressed
within the scope of this document. Further, the coveragaevabmputed for a
fragment of some primitive may depend on the primitive’ateinship to a num-
ber of grid squares neighboring the one corresponding t&rélgenent, and not just

Version 1.1.10 (DRAFT - March 31, 2007)

3.3. POINTS 51

If MULTI SAMPLE is enabled, multisample rasterization of all primitiveEetis
substantially from single-sample rasterization. It is emstibod that each pixel in
the framebuffer haSAMPLES locations associated with it. These locations are
exact positions, rather than regions or areas, and eaclfeisa@ to as a sample
point. The sample points associated with a pixel may be docatside or outside
of the unit square that is considered to bound the pixel. Heamore, the relative
locations of sample points may be identical for each pixehim framebuffer, or
they may differ.

If the sample locations differ per pixel, they should be adid to window, not
screen, boundaries. Otherwise rendering results will bedaiv-position specific.
The invariance requirement described in section 3.1 ixegldor all multisample
rasterization, because the sample locations may be adunatipixel location.

It is not possible to query the actual sample locations okalpi

3.3 Points

The rasterization of points is controlled with

voi d PointSizg f | oat size);
voi d PointSizeX f i xed size);

sizespecifies the requested size of a point. The default valu®isA value less
than or equal to zero results in the errcwWALI D_VALUE.

The requested point size is multiplied with a distance ation factor,
clamped to a point size range specified withintParameter (see below,) and
further clamped to the implementation-dependent poirg singe to produce the
derived point size:

derived_size = impl_clamp <u867“ clamp (size >)
_ -) i Va+bxd+cxd?

whered is the eye-coordinate distance from the €ye(), 0, 1) in eye coordinates,
to the vertex, and, b, andc are distance attenuation function coefficients.

Point sprites are enabled or disabled by calliwable or Disable with the
symbolic constanPO NT_SPRI TE_CES. The default state is for point sprites to be
disabled. When point sprites are enabled, the state of tim gatialiasing enable
is ignored.

The point sprite texture coordinate replacement mode iwitethe commands

voi d TexEnv{ixf}(enumtarget enumpname T param);

Version 1.1.10 (DRAFT - March 31, 2007)

3.3. POINTS 53

integers. This(z,y) address, along with data derived from the data associated
with the vertex corresponding to the point, is sent as a sifrgigment to the per-
fragment stage of the GL.

The effect of a point width other thah(0 depends on the state of point an-
tialiasing and point sprites.

Non-Antialiased Points

If antialiasing and point sprites are disabled, the actualttwis deter-
mined by rounding the supplied width to the nearest integken clamp-
ing it to the implementation-dependent maximum non-aasald point width.
This implementation-dependent value must be no less thainthlementation-
dependent maximum antialiased point width, rounded to dagast integer value,
and in any event no less thanlf rounding the specified width results in the value
0, then it is as if the value werk If the resulting width is odd, then the point

(@.9) = (120] + 55 Lyl + 3)

is computed from the vertex’s,, andy,,, and a square grid of the odd width cen-
tered at(x, y) defines the centers of the rasterized fragments (recalfriqginent
centers lie at half-integer window coordinate values)h# width is even, then the
center point is

(,9) = (12w + 3, Ly + 51
the rasterized fragment centers are the half-integer windoordinate values
within the square of the even width centered(eny). See figure 3.2.

All fragments produced in rasterizing a non-antialiaseahipare assigned the
same associated data, which are those of the vertex condisigato the point, with
texture coordinates, ¢, andr replaced withs/q, t/q, andr/q, respectively. Ifg is
less than or equal to zero, the results are undefined.

Antialiased Points

If antialiasing is enabled and point sprites are disableel) point rasterization
produces a fragment for each fragment square that interdeetegion lying within
the circle having diameter equal to the current point widtll @entered at the
point’s (x,,, y,,) (figure 3.3). The coverage value for each fragment is the avind
coordinate area of the intersection of the circular regiatinvihe corresponding
fragment square (but see section 3.2). This value is saveédised in the final
step of rasterization (section 3.9). Other associated fdateach fragment are
determined in the same fashion as for non-antialiased goint

Version 1.1.10 (DRAFT - March 31, 2007)

3.3. POINTS 54

1

1

r

1

|

1

r

1

1

|

r

1

1

1

r

1

1

1

r

|

1

1
Q-
1

o
6]

1

1
-
1

|

1
-
1

1

|
-
1

1

1
-
1

1

1
-
|

1

1
-
1

i e i e
1

05 15 25 35 45 55 05 15 25 35 45 55

Odd Width Even Width

—

Figure 3.2. Rasterization of non-antialiased wide poifite crosses show fragmen
centers produced by rasterization for any point that liethiwithe shaded region
The dotted grid lines lie on half-integer coordinates.

Not all widths need be supported when point antialiasingnisbait the width
1.0 must be provided. If an unsupported width is requested, #aeast supported
width is used instead. The range of supported widths and ftthwef evenly-
spaced gradations within that range are implementatioertignt. The range and
gradations may be obtained using the query mechanism deddn Chapter 6. If,
for instance, the width range is from 0.1 to 2.0 and the gradawvidth is 0.1, then
the widths0.1,0.2,...,1.9, 2.0 are supported.

Point Sprites

When point sprites are enabled, then point rasterizatiodyres a fragment
for each framebuffer pixel whose center lies inside a squantered at the point’s
(2w, yw), With side length equal to the current point size.

Associated data for each fragment are determined in the skasie
ion as for non-antialiased points. However, for each textunit where
COORD_REPLACE_CES is TRUE, texture coordinates are replaced with point sprite
texture coordinatesThe s coordinate varies from 0 to 1 across the point horizon-
tally left-to-right, while thet coordinate varies from 0 to 1 vertically top-to-bottom.
Ther andq coordinates are replaced with the constants 0 and 1, resglgct

Version 1.1.10 (DRAFT - March 31, 2007)

3.5. POLYGONS 62

3.4.3 Line Rasterization State

The state required for line rasterization consists of thatiihm-point line width and
a bit indicating whether line antialiasing is on or off. Thnitial value of the line
width is 1.0 and the initial state of line segment antialiasing is digdbl

3.4.4 Line Multisample Rasterization

If MULTI SAMPLE is enabled, and the value 8AMPLE_BUFFERS is one, then lines
are rasterized using the following algorithm, regardieastrether line antialiasing
(LI NE_.SMOOTH) is enabled or disabled. Line rasterization produces areag for
each framebuffer pixel with one or more sample points thargect the rectangular
region that is described in th&ntialiasing portion of section 3.4.2 (Other Line
Segment Features).

Coverage bits that correspond to sample points that irdeeseetained rectan-
gle are 1, other coverage bits are 0. Each color, depth, dmd xture coordinates
is produced by substituting the corresponding sample ilmeanto equation 3.3,
then using the result to evaluate equation 3\ implementation may choose to |
assign the same color value and the same set of texture natedito more than
one sample The color value and the set of texture coordinates needeetvalu- "
ated at the same location.

Line width range and number of gradations are equivalenbdsd supported
for antialiased lines.

3.5 Polygons

A polygon results from a triangle strip, triangle fan, orissrof separate trian-
gles. Like points and line segments, polygon rasterizasaontrolled by several
variables.

3.5.1 Basic Polygon Rasterization

The first step of polygon rasterization is to determine if ploé/gon isback facing

or front facing This determination is made by examining the sign of the eosa-
puted by equation 2.6 of section 2.12.1 (including the gdssieversal of this sign
as indicated by the last call terontFace). If this sign is positive, the polygon is
front facing otherwise, it is back facing. This determination is useddnjunction
with the CullFace enable bit and mode value to decide whether or not a particula
polygon is rasterized. TheullFace mode is set by calling

voi d CullFace(enummode);

Version 1.1.10 (DRAFT - March 31, 2007)

3.5. POLYGONS 64

Just as with line segment rasterization, equation 3.6 mappeoximated by

= afa/aa + bfb/ab + Cfc/ac§

this may vyield acceptable results for color valuesnfitstbe used for depth val-
ues), but will normally lead to unacceptable distortioreet$ if used for texture
coordinates.

3.5.2 Depth Offset

The depth values of all fragments generated by the rastienzaf a polygon may
be offset by a single value that is computed for that polygdhe function that
determines this value is specified by calling

voi d PolygonOffse(f | oat factor, fl oat units);
voi d PolygonOffsety f i xed factor, fi xed units);

factor scales the maximum depth slope of the polygon, anitls scales an im-
plementation dependent constant that relates to the ussgnéution of the depth
buffer. The resulting values are summed to produce the palydfset value. Both
factor andunitsmay be either positive or negative.

The maximum depth slope of a triangle is

m= () (52) @7

where(xy,, Yy, 2w) IS @ point on the trianglen may be approximated as

P

0y,

Oz

. } . (3.8)

m:max{ ,

The minimum resolvable difference is an implementation-dependent con-
stant It is the smallest difference in window coordinat®alues that is guaranteed
to remain distinct throughout polygon rasterization andhie depth buffer. All
pairs of fragments generated by the rasterization of twggmis with otherwise
identical vertices, but,, values that differ by-, will have distinct depth values.

The offset value for a polygon is

o=mx* factor + r *x units. (3.9)

Version 1.1.10 (DRAFT - March 31, 2007)

3.6. PIXEL RECTANGLES 65

m is computed as described above, as a function of depth vialties range [0,1],
ando is applied to depth values in the same range.

Boolean state valueOLYGON OFFSET _FI LL determines whether is applied
during the rasterization of polygons. This boolean stataevés enabled and dis-
abled using the command@nable andDisable If POLYGON.OFFSET_FI LL is en-
abled,o is added to the depth value of each fragment produced by sherization
of a polygon.

Fragment depth values are always limited to the range [Bithler by clamping
after offset addition is performed (preferred), or by clangpthe vertex values used
in the rasterization of the polygon.

3.5.3 Polygon Multisample Rasterization

If MULTI SAMPLE is enabled and the value BAMPLE_BUFFERS is one, then poly-
gons are rasterized using the following algorithm. Polygasterization produces
a fragment for each framebuffer pixel with one or more sanmalieits that satisfy
the point sampling criteria described in section 3.5.1luding the special treat-
ment for sample points that lie on a polygon boundary edge plilygon is culled,
based on its orientation and ti@&ullFace mode, then no fragments are produced
during rasterization.

Coverage bits that correspond to sample points that satisfypoint sampling
criteria are 1, other coverage bits are 0. Each color, degpitl,set of texture co-
ordinates is produced by substituting the correspondimgpga location into the
barycentric equations described in section 3.5.1, usingtan 3.6 or its approx-
imation that omitsw components An implementation may choose to assign the
same color value and the same set of texture coordinates retiman one sample
by barycentric evaluation using any location withthe pixel including the frag-
ment center or one of the sample locations. The color valdetaa set of texture
coordinates need not be evaluated at the same location.

3.5.4 Polygon Rasterization State

The state required for polygon rasterization consistste factor and bias values
of the polygon offset equation.The initial polygon offset factor and bias values
are both 0; initially polygon offset is disabled.

3.6 Pixel Rectangles

Rectangles of color values may be specified to the GL usexmage2D and
related commands described in section 3.7.1. Some of tlzaneders and opera-

Version 1.1.10 (DRAFT - March 31, 2007)

3.6. PIXEL RECTANGLES 68

typeParameter Corresponding Special
Token Name GL Data Type| Interpretation
UNSI GNED_BYTE ubyt e No

UNSI GNED_SHORT 565 ushort Yes

UNSI GNED.SHORT 4.4 4 4 ushort Yes

UNSI GNED.SHORT 5.5 5.1 ushort Yes

Table 3.2: Teximage2D and ReadPixelstype parameter values and the corre-
sponding GL data types. Refer to table 2.2 for definitions bftiata types. Special
interpretations are described near the end of section.Fx@&dPixelsaccepts only

a subset of these types (see section 4.3.1)

Format Name | Element Meaning and OrdgrTarget Buffer |
ALPHA A Color
RGB R,G,B Color
RGBA R,G,B,A Color
LUM NANCE Luminance Color
LUM NANCE_ALPHA Luminance, A Color

Table 3.3:Teximage2DandReadPixelsformats. The second column gives a de-
scription of and the number and order of elements in a gr&gadPixelsaccepts
only a subset of these formats (see section 4.3.1)

| Format | Type | Bytes per Pixel
RGBA UNSI GNED_BYTE 4
RGB UNSI GNED_BYTE 3
RGBA UNSI GNED_SHORT 4 _4_4_4 2
RGBA UNSI GNED_.SHORT 5.5.5_1 2
RGB UNSI GNED_SHORT_5_6_5 2
LUM NANCE_ALPHA | UNSI GNED_BYTE 2
LUM NANCE UNSI GNED_BYTE 1
ALPHA UNSI GNED_BYTE 1

Table 3.4: Valid pixel format and type combinations.

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 74

represents each valug/(2" — 1), wherek € {0,1,...,2" — 1}, ask (e.g. 1.0is
represented in binary as a string of all ones).

Thelevelargument tafexlimage2Dis an integetevel-of-detailnumber. Levels
of detail are discussed below, unddipmapping. The main texture image has a
level of detail number of 0. If a level-of-detail less thamaes specified, the error
| NVALI D_VALUE is generated.

If the border argument to Texlmage2D is not zero, then the error
I NVALI D_VALUE is generated.

For non-zerowidth andheight it must be the case that

ws = 2" (3.12)

hy = 2™ (3.13)

for some integers: and m, wherew, and h, are the specified imageidth
and height If any one of these relationships cannot be satisfied, theretror
I NVALI D_VALUE is generated.

An image with zero width or height indicates the null textufeéhe null texture
is specified for level-of-detail zero, it is as if texturingere disabled.

The maximum allowable width and height of a texture image tnies at
least 2% for image arrays of leveD through k, wherek is the log base 2 of
MAX_TEXTURE_SI ZE.

An implementation may allow an image array of level 0 to beatad only if
that single image array can be supported. Additional caimgs on the creation of
image arrays of level 1 or greater are described in moreldetaection 3.7.9.

The image indicated to the GL by the image pointer is decodédapied into
the GL’s internal memory.

We shall refer to the decoded image as tivdure array A texture array has
width and height

wt:2”
hy =2

wheren andm are defined in equations 3.12 and 3.13.

An element(i, j) of the texture array is calledtaxel Thetexture valueused in
texturing a fragment is determined by that fragment’s ass$ed (s, t) coordinates,
but does not necessarily correspond to any actual.t&es figure 3.8.

If the data argument ofTeximage2Dis a null pointer (a zero-valued pointer
in the C implementation), a texture array is created withsppecifiedtarget level
internalformat width, and height but with unspecified image contents. In this

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 77

\ \ Texture Format
Color Buffer | A | L | LA | RGB | RGBA
v

A N — —
L v =1 = -
LA v = =
RGB v =1 v =
RGBA SV 7 v

Table 3.9:CopyTeximageinternal format/color buffer combinations.

voi d CopyTexSublmage2 enumtarget i nt level
i nt xoffsef i nt yoffset i nt x, i nt y, si zei width,
si zei height);

respecify only a rectangular subregion of an existing textrray. No change

is made to thanternalformat width, or height parameters of the specified tex-
ture array, nor is any change made to texel values outsidesgheified subre-
gion. Thetargetarguments offexSublmage2DandCopyTexSublmage2Dmust

be TEXTURE_2D. Thelevel parameter of each command specifies the level of the
texture array that is modified. lévelis less than zero or greater than the base 2
logarithm of the maximum texture width or height, the errdivVALI D_VALUE is
generated.

TexSublmage2Dargumentswidth, height format, type anddata match the
corresponding arguments f@xImage2D, meaning that they are specified using
the same values, and have the same meanings.

CopyTexSublmage2Dargumentsx, y, width, and height match the corre-
sponding arguments ©opyTexlmage2D Each of theTexSublmagecommands
interprets and processes pixel groups in exactly the maofriesr TexImage coun-
terpart, except that the assignment of R, G, B, angiXel group values to the
texture components is controlled by thrgernalformat of the texture array, not
by an argument to the command. The same constraints and eqpply to the
TexSublmagecommands’ argumerfbrmatand theinternalformatof the texture
array being respecified as apply to fieematandinternalformatarguments of its
Texlmage counterparts.

Argumentsxoffsetandyoffsetof TexSublmage2DandCopyTexSublmage2D
specify the lower left texel coordinates ofnadth-wide byheighthigh rectangular
subregion of the texture array, address as in figure 3.8. nflaki and i, to be
the specified width and height of the texture array, and takiny, w, andh to
be thexoffset yoffset width, and heightargument values, any of the following

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 79

pixel transfer modes are ignored when decoding a compreeggede image. If the
imageSizearameter is not consistent with the format, dimensiond,camtents of
the compressed image, ANVALI D_VALUE error results. If the compressed image
is not encoded according to the defined image format, thdtsesuthe call are
undefined.

Specific compressed internal formats may impose formatispeestrictions
on the use of the compressed image specification calls omedeas. For example,
the compressed image format might not allewdth or heightvalues that are not a
multiple of 4. Any such restrictions will be documented i #xtension specifica-
tion defining the compressed internal format; violatingstheestrictions will result
in anl NVALI D_OPERATI ONerror.

Any restrictions imposed by specific compressed internahéds will be in-
variant with respect to image contents, meaning that if theaGcepts and stores
a texture image in compressed for@pmpressedTexlmage2Dwill accept any
properly encoded compressed texture image of the same,wigltht, compressed
image size, and compressed internal format for storageeagaime texture level.

The specific compressed texture formats supportedCbgnpressedTexim-
age2D and the corresponding base internal format for each spdoifimat, are
defined in table 3.10.

| Compressed Texture FormatBase Internal Formalt

PALETTEA_RGB8_OES RGB
PALETTEA_RGBA8_CES RGBA
PALETTE4A_R5_G6_B5_OES RGB
PALETTE4_RGBA4 _OES RGBA
PALETTE4_RGB5_A1_CES RGBA
PALETTE8_RGB8_CES RGB
PALETTE8_RGBA8_CES RGBA
PALETTES8_R5_G5_B5_CES RGB
PALETTE8_RGBA4 _CES RGBA
PALETTES8_RGB5_A1_CES RGBA

Table 3.10: Specific compressed texture formats.

Respecifying Subimages of Compressed Textures

The command I

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 80

voi d CompressedTexSublmage2DPenumtarget i nt level
i nt xoffsef i nt yoffsef si zei width, si zei height
enumformat si zei imageSize voi d *data);

respecifies only a rectangular region of an existing texturay, with incoming
data stored in a known compressed image format.taitget level xoffset yoffset
width, height andformat parameters have the same meaning a$exSublm-
age2D datapoints to compressed image data stored in the compressee ifoa
mat corresponding ttormat

The image pointed to bgata and theimageSizgparameter is interpreted as
though it was provided t€ompressedTexlmage2DThis command does not pro-
vide for image format conversion, so aNVALI D_.OPERATI ON error results iffor-
matdoes not match the internal format of the texture image beindified. If the
imageSizeparameter is not consistent with the format, dimensiond, @antents
of the compressed image (too little or too much data)| BWALI D_VALUE error
results.

As with CompressedTexImagecalls, compressed internal formats may have
additional restrictions on the use of the compressed impgeification calls or
parameters. Any such restrictions will be documented insihecification defin-
ing the compressed internal format; violating these refsnms will result in an
I NVALI D_.OPERATI ON error.

Any restrictions imposed by specific compressed internahéds will be in-
variant with respect to image contents, meaning that if theGepts and stores a
texture image in compressed for@pmpressedTexSublmage2vill accept any
properly encoded compressed texture image of the same,igigiht, compressed
image size, and compressed internal format for storageeatdme texture level.

Calling CompressedTexSublmage2vill result in anl NVALI D.OPERATI ON
error if xoffsetor yoffsetis not equal to zero, or #Wvidth andheightdo not match
the width and height of the texture, respectivelfhe contents of any texel outside
the region modified by the call are undefined. These regristimay be relaxed
for specific compressed internal formats whose images aily eaodified.

3.7.4 Compressed Paletted Textures

If internalformatis PALETTE4_RGB8, PALETTE4_RGBAS, PALETTE4_R5_G6_B5,
PALETTE4_RGBA4, PALETTE4_RGB5_Al, PALETTES8_RGB8, PALETTES_RGBAS,
PALETTES8_R5_G5_B5, PALETTES8_RGBA4, or PALETTES8_RGB5_A1, the com-
pressed texture is a compressed paletted textdega contains the palette data
followed by the mipmap leveJsvhere the number of mipmap levels stored is given

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 86

wherefrac(x) denotes the fractional part of

The texture value is found as

T = (1 - a)(l - B)Tiojo + a(l - ﬂ)Tile + (1 - O‘)BTiojl + aﬂTim& (3-18)

wherer;; is the texel at locatioi, j) in the texture image.

Mipmapping
TEXTUREM N_FI LTER values NEAREST_M PMAP_NEAREST,
NEAREST_M PVAP_LI NEAR, LI NEAR M PVAP_NEAREST, and

LI NEAR.M PMAP_LI NEAR each require the use of mipmap A mipmap is
an ordered set of arrays representing the same image; eaghhas a resolution
lower than the previous one. If the image array of level zeas dimensions
2" x 2™, then there arenax{n, m} + 1 image arrays in the mipmap. Each array
subsequent to the array of level zero has dimensions

o(i—1)xo(j—1)
where the dimensions of the previous array are

o(i) x ()
and

2% x>0
@) =97 L<o

until the last array is reached with dimensibrx 1.

Each array in a mipmap is defined usifgximage2Dor CopyTeximage2D
the array being set is indicated with the level-of-detagumnentlevel Level-
of-detail numbers proceed from zero for the original tegtarray throughy =
max{n, m} with each unit increase indicating an array of half the disiens of
the previous one as already described. All arrays from Zierough ¢ must be
defined, as discussed in section 3.7.9.

The mipmap is used in conjunction with the level of detail pp@ximate the
application of an appropriately filtered texture to a fragmelLet ¢ be the value
of \ at which the transition from minification to magnificationcoics (since this
discussion pertains to minification, we are concerned orilly vialues ofA where
A > o).

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 93

COMBI NELRGB | Texture Function \

REPLACE Arg0
MODULATE Arg0 x Argl
ADD Arg0 4 Argl

ADD.SI GNED | Arg0+ Argl —0.5
| NTERPOLATE | Arg0 * Arg2 + Argl x (1 — Arg2)

SUBTRACT Arg0 — Argl
DOT3_RGB 4 x ((Arg0, — 0.5) * (Argl, — 0.5)+
(Arg0, — 0.5) * (Argly, — 0.5)+
(Arg0p, — 0.5) * (Argl, — 0.5))

DOT3_RGBA 4 x ((Arg0, — 0.5) % (Argl, — 0.5)+
(Arg0, — 0.5) * (Argly, — 0.5)+
(Arg0p, — 0.5) * (Argl, — 0.5))

COMBI NE_ALPHA | Texture Function \

REPLACE Arg0

MODULATE Arg0 x Argl

ADD Arg0 + Argl

ADD_S| GNED Arg0 + Argl — 0.5

| NTERPOLATE Arg0 * Arg2 4+ Argl = (1 — Arg2)
SUBTRACT Arg0 — Argl

Table 3.17:COMVBI NE texture functions. The scalar expression computed for the
DOT3_RGB andDOT3_RGBA functions is placed into each of theR3B) or 4 (RGBA)
components of the output. The result generated f@mwBI NE_ALPHA is ignored

for DOT3_RGBA.

by the values o0RGB_SCALE andALPHA_SCALE, respectively (the scale factors may
only take on values of 1.0, 2.0, or 4.0)he results are clamped f@ 1].

The argumentsArg0, Argl, and Arg2 are determined by the values of
SRCn_RGB, SRCn_ALPHA, OPERANDN_RGB and OPERANDN_ALPHA, wheren = 0,

1, or 2, as shown in tables 3.18 and 3.19.

The state required for the current texture environment,efach texture unit,
consists of a six-valued integer indicating the texturecfiom, an eight-valued in-
teger indicating th&kGB combiner function and a six-valued integer indicating the
ALPHA combiner function, six four-valued integers indicating ttombinerrRGB
and ALPHA source arguments, three four-valued integers indicatiegcombiner

Version 1.1.10 (DRAFT - March 31, 2007)

3.7. TEXTURING 95

RGB operands, three two-valued integers indicating the coerl®ihPHA operands,
four floating-point environment color values, and two thvedued floating-point
scale factors In the initial state, the texture and combiner functions aach
MODULATE, the combineRGB and ALPHA sources are eacfEXTURE, PREVI OUS,
andCONSTANT for sources 0, 1, and 2 respectively, the combiR@s operands for
sources 0 and 1 are eaBRC COLCR, the combineiRGB operand for source 2, as
well as for the combineALPHA operands, are eacdRC_ALPHA, the environment
color is(0,0,0,0), andRGB_SCALE andALPHA SCALE are each 1.0

3.7.13 Texture Application

Texturing is enabled or disabled using the genEnable andDisablecommands,
with the symbolic constanTEXTURE_2D to enable or disable texturing, respec-
tively. If texturing is disabled, a rasterized fragment &sped on unaltered to the
next stage of the GL (although its texture coordinates maglibearded). Other-
wise, a texture value is found according to the parametearegabf the currently
bound texture imageusing the rules given in sections 3.7.6 through 3.7.8. This
texture value is used along with the incoming fragment in potimg the texture
function indicated by the currently bound texture envir@min The result of this
function replaces the incoming fragment’s primary R, G, Bd & values. These
are the color values passed to subsequent operations. @tteeassociated with
the incoming fragment remain unchanged, except that tharexoordinates may
be discarded.

Each texture unit is paired with an environment functiorsta@wn in figure 3.9.
The second texture function is computed using the textulkgevigom the second
texture, the fragment resulting from the first texture fumectcomputation and the
second texture unit’s environment function. If there isiedtiexture, the fragment
resulting from the second texture function is combined \ih#hthird texture value
using the third texture unit's environment function and g0 ®he texture unit se-
lected byActiveTexture determines which texture unit's environment is modified
by TexEnv calls.

If the value of TEXTURE_ENV_MODE is COVBI NE, the texture function associated
with a given texture unit is computed using the values sptibly SRCn_RGB,
SRCn_ALPHA, OPERANDN_RGB and OPERANDN _ALPHA.

Texturing is enabled and disabled individually for eachuexunit. If texturing
is disabled for one of the units, then the fragment resulfiog the previous unit
is passed unaltered to the following unit.

The required state, per texture unit, is oneibdicating whether texturing is
enabled or disabled. In the initial stateexturing is disabled for all texture units.

Version 1.1.10 (DRAFT - March 31, 2007)

3.9. ANTIALIASING APPLICATION 98

in table 2.7 for signed integers. Each componenCefis clamped tq0, 1] when
specified.

The state required for fog consists of a three-valued imtégeselect the fog
equation three floating-point values, e, ands, an RGBA fog color, and a single
bit to indicate whether or not fog is enabled. In the initidts, fog is disabled,
FOGMODE is EXP, d = 1.0, e = 1.0, ands = 0.0; C = (0,0,0,0) andi = 0.

3.9 Antialiasing Application

Finally, if antialiasing is enabled for the primitive fromhich a rasterized fragment
was produced, then the computed coverage value is applite: thagment. The
value is multiplied by the fragment’s alpha (A) value to i@l final alpha value.

3.10 Multisample Point Fade

If multisampling is enabled and the rasterized fragmentltegrom a point prim-
itive, then the computed fade factor from equation 3.2 idiaggo the fragment.
The fade factor is multiplied by the fragment’s alpha valagield a final alpha
value.

Version 1.1.10 (DRAFT - March 31, 2007)

4.1. PER-FRAGMENT OPERATIONS 100

Fragment Pixel Multisample

+ — : Scissor
Associated Ownership = Test —>| Fragment
Test Operations

Depth Buffer < Stencil < Alpha

Test Test Test

Framebuffer AA Framebuffer<A

Blending =P Dithering =P Logicop [P Fram:guffer

Framebuffer J Framebuffer J

Figure 4.1. Per-fragment operations.

and conditions. We describe these modifications and testgrastnmed in Fig-
ure 4.1, in the order in which they are performed.

4.1.1 Pixel Ownership Test

The first test is to determine if the pixel at locati¢n,,, y,,) in the framebuffer
is currently owned by the GL (more precisely, by this GL catite If it is not,
the window system decides the fate of the incoming fragmieassible results are
that the fragment is discarded or that some subset of theequbat per-fragment
operations are applied to the fragment. This test allowswitrelow system to
control the GL's behavior, for instance, when a GL window iscured.

4.1.2 Scissor Test

The scissor test determines(if,,, y.,) lies within the scissor rectangle defined by
four values. These values are set with

voi d Scissof i nt left, i nt bottom si zei width,
si zei height);

Version 1.1.10 (DRAFT - March 31, 2007)

4.3. READING PIXELS 111

When Clear is called, the only per-fragment operations that are agp(ie
enabled) are the pixel ownership test, the scissor testdginering. The masking
operations described in the last section (4.2.2) are afsctefe. If a buffer is not
present, then &lear directed at that buffer has no effect.

The state required for clearing is a clear value for each efdblor buffer,
the depth buffer, and the stencil buffer. Initially, the R&Bolor clear value is
(0,0,0,0), the stencil buffer clear value is 0, and the déptfer clear value is 1.0.

Clearing the Multisample Buffer

The color samples of the multisample buffer are cleared whercolor buffer is
cleared, as specified by ti@ear mask bitCOLOR BUFFER BI T.

If the Clear mask bitsDEPTH.BUFFER_BI T or STENCI L_BUFFER_BI T are set,
then the corresponding depth or stencil samples, respdgtare cleared.

4.3 Reading Pixels

Pixels may be read from the framebuffer to client memory gigive ReadPixels
commands, as described below. Pixels may also be copieddient memory or
the framebuffer to texture images in the GL using Teglmage2DandCopyTex-
Image2D commands, as described in section 3.7.1.

4.3.1 Reading Pixels

The method for reading pixels from the framebuffer and pigdihem in client
memory is diagrammed in Figure 4.2. We describe the stagdgegdixel reading
process in the order in which they occur.

Pixels are read using

voi d ReadPixelgi nt x, i nt y, si zei width, si zei height
enumformat enumtype voi d *data);

The arguments aftex andy to ReadPixelsare those described in section 3.6.2
defining pixel rectangles. Only two combinations format and type are ac-
cepted. The first igormat RGBA and type UNSI GNEDBYTE. The second is an
implementation-chosen format from among those definedbtetd.4. The val-
ues offormatandtypefor this format may be determined by calligetintegerv
with the symbolic constants MPLEMENTATI ON_.COLOR_READ_FORMAT_CES and

| MPLEMENTATI ONL.COLOR READ.TYPE CES, respectively. The implementation-
chosen format may vary depending on the format of the cuyréaiund rendering

Version 1.1.10 (DRAFT - March 31, 2007)

4.3. READING PIXELS 112

RGBA pixel data in _¢

Convert to float

Pixel Storage

Clamp to [0,1] Operations

'

Pack

byte, short, or packed
pixel component data stream

Figure 4.2. Operation dReadPixels Operations in dashed boxes may be enabled
or disabled.

| Parameter Name | Type | Initial Value | Valid Range|
| PACKALI GNMVENT | integer | 4 | 1248 |

Table 4.3:PixelStore parameters pertaining ®eadPixels

surface The pixel storage modes that apply ReadPixelsare summarized in
Table 4.3.

Obtaining Pixels from the Framebuffer

The buffer from which values are obtained is the color buifeed for writing (see
section 4.2.1).

ReadPixelsobtains values from the color buffer (with lower left handroer
at (0,0)) for each pixel(z + i,y + j) for 0 < i < width and0 < j < height;
this pixel is said to be théh pixel in thejth row. If any of these pixels lies outside
of the window allocated to the current GL context, the valabtined for those
pixels are undefined. Results are also undefined for ind@Vigixels that are not
owned by the current context. OtherwiseadPixelsobtains values from the color
buffer, regardless of how those values were placed there.

Version 1.1.10 (DRAFT - March 31, 2007)

4.3. READING PIXELS 113

typeParameter GL Data Type| Component
Conversion Formulg
UNSI GNED.BYTE ubyt e c=(22-1)f

UNSI GNED_SHORT 5 6 5 ushort c=02N -1)f
UNSI GNED_SHORT 4 4 4 4 ushort c=02VN -1)f
UNSI GNED_SHORT 5 5 5 1 ushort c=02N -1)f

Table 4.4: Reversed component conversions, used when campdata are be-
ing returned to client memory. Color components are coadgeftom the internal
floating-point representatiorf)] to a datum of the specified GL data typ¢ (sing
the specified equation. All arithmetic is done in the intéftaating point format.
These conversions apply to component data returned by Gily geenmands and
to components of pixel data returned to client memory. Thea#&gns remain the
same even if the implemented ranges of the GL data types asdegrthan the
minimum required ranges. (See Table 2.2.) Equations Withs the exponent are
performed for each bitfield of the packed data type, wittset to the number of
bits in the bitfield.

If formatis RGBA, then red, green, blue, and alpha values are obtained from
the selected buffer at each pixel location. If the framedauffoes not support alpha
values then the A that is obtained is 1.0.

Conversion of RGBA values

The R, G, B, and A values form a group of elements. Each elemeaken to
be a fixed-point value if0, 1] with m bits, wherem is the number of bits in the
corresponding color component of the selected buffer (seton 2.12.8).

Final Conversion

Each component is first clamped|tg 1]. Then the appropriate conversion formula
from table 4.4 is applied to the component.

Placement in Client Memory

Groups of elements are placed in memory just as they are fatenmemory for
Teximage2D That is, theith group of thejth row (corresponding to th&h pixel
in the jth row) is placed in memory just where thith group of thejth row would

Version 1.1.10 (DRAFT - March 31, 2007)

6.1. QUERYING GL STATE 118

6.1.2 Data Conversions

If a Get command is issued that returns value types different fragrtype of the
value being obtained, a type conversion is performed.

If GetBooleanvis called, a floating-point, fixed-point, or integer valuaerts
to FALSE if and only if it is zero (otherwise it converts TRUE).

If Getintegerv (or any of theGet commands below) is called, a boolean
value is interpreted as eithdr or 0, and a floating-point or fixed-point value
is rounded to the nearest integer, unless the value is an RGB#& compo-
nent, aDepthRange value, a depth buffer clear value, or a normal coordi-
nate. In these cases, tliget command converts the floating-point or fixed-
point value to an integer according theNT entry of Table 4.4; a value not in
[—1,1] converts to an undefined value. Additionally, if the targétGetinte-
gerv is one of the special valuégoDELVI EWNMATRI X_FLOAT_AS_|I NT_BI TS_CES,
PRQIECTI ONLMATRI X_FLOAT_AS_I NT_BI TS_CES,
or TEXTURE_MATRI X_FLOAT_AS_| NT_BI TS_CES, then the corresponding floating-
point matrix elements are returned in an array of integessp@ling to the IEEE
754 floating point “single format” bit layodt?.

If GetFixedvis called, a boolean value is interpreted as eithéror 0.0, and
an integer or floating-point value is coerced to fixed-point.

If GetFloatv is called, a boolean value is interpreted as eithéror 0.0, and
an integer or fixed-point value is coerced to floating-point.

If a value is so large in magnitude that it cannot be representith the re-
quested type, then the nearest value representable usirmgdbested type is re-
turned.

Unless otherwise indicated, multi-valued state varialoégsrn their multiple
values in the same order as they are given as arguments tortiaands that set
them. For instance, the twidepthRangeparameters are returned in the oraer
followed byf.

Most texture state variables are qualified by the valu@&@fl VE_TEXTURE
to determine which server texture state vector is queried.lienC texture
state variables such as texture coordinate array pointersgaalified by the
value of CLI ENT_ACTI VE_.TEXTURE. Tables 6.3, 6.4, 6.7, 6.13, 6.15, and 6.21
indicate those state variables which are qualified AyTI VE TEXTURE or

1This functionality exists for applications using the Conmwldte profile which nonetheless need
access to the full accuracy of the internal matrix represt@nt, but is available in the Common profile
as well

2|EEE 1987. IEEE Standard 754-1985 for Binary Floating-PokArithmetic, IEEE.
Reprinted in SIGPLAN 22 2, 9-25. Also see the IEEE 754 Working Group Page at
http://grouper.ieee.org/groups/754/

Version 1.1.10 (DRAFT - March 31, 2007)

6.2. STATE TABLES

| Type code| Explanation

B Boolean
BMU Basic machine units
C Color (floating-point R, G, B, and A values)
T Texture coordinates (floating-point ¢, r, ¢ val-
ues)

N Normal coordinates (floating-point, i, =z values)
v Vertex, including associated data

A Integer

zZt Non-negative integer

Z, Zi | k-valued integerix indicatesk is minimum)
R Floating-point number
R* Non-negative floating-point number
R[*Y | Floating-point number in the rande, b|

RF k-tuple of floating-point numbers

Ry k-valued floating-poirmtumber

P Position (, y, z, w floating-point coordinates)
D Direction (z, y, z floating-point coordinates)
M* 4 x 4 floating-point matrix

I Image

Y Pointer (data type unspecified)

n X type | ncopies of typeype (n* indicatesn is minimum)

Table 6.1: State variable types

Version 1.1.10 (DRAFT - March 31, 2007)

122

R B RdReR) OF 4 el

e

(Lo%q

Get Initial
Get value Type Cmnd Value Description Sec. Attribute
MODELVIEW.MATRIX 16 % x M* GetFloatv Identity Model-view matrix stack| 2.10.2 -
PROJECTIONMATRIX 2% x M* GetFloatv Identity Projection matrix stack | 2.10.2 -
TEXTURE MATRIX 2% x2 % xM?* GetFloatv Identity Texture matrix stack 2.10.2 -
& MOD- 4x4xZ Getlntegerv Identity Alias of 2.10.2 -
ELVIEW_MATRIX _FLOAT AS_INT.BITS.OES MODELVI EWMATRI X
in integer encoding
& PROJEC- 4x4xZ Getlntegerv Identity Alias of 2.10.2 -
TION_MATRIX _FLOAT_AS_INT_BITS.OES PRQIECTI ONLMATRI X
in integer encoding
& TEX- 4dx4xZ Getlntegerv Identity Alias of 2.10.2 -
TURE.MATRIX _FLOAT.AS_INT_BITS.OES TEXTURE_VATRI Xin
integer encoding
VIEWPORT 4x 7 Getlntegerv see 2.10.1 | Viewport origin & extent | 2.10.1 viewport
DEPTHRANGE 2x Rt GetFloatv 0,1 Depth range near & far | 2.10.1 viewport
MODELVIEW.STACK_DEPTH A Getlntegerv 1 Model-view matrix stack| 2.10.2 -
pointer
PROJECTIONSTACK DEPTH zZ+ Getlntegerv 1 Projection matrix stack | 2.10.2 -
pointer
TEXTURE STACK_DEPTH 2% xZT Getlntegerv 1 Texture matrix stack 2.10.2 -
pointer
MATRIX _MODE Zy Getintegerv | MODELVI EW| Current matrix mode 2.10.2 transform
NORMALIZE B IsEnabled False Current normal 2.10.3| transform/enablg
normalization on/off
RESCALENORMAL B IsEnabled False Current normal rescaling 2.10.3| transform/enablg
on/off
CLIP_PLANE; 1% xR?* GetClipPlane 0,0,0,0 User clipping plane 2.11 transform
coefficients
CLIP_PLANE; 1% xB IsEnabled False ith user clipping plane 2.11 | transform/enablg

enabled

S318V.L 31VIS 29

8¢T

(2002 ‘TE YoreN - 14vHa) 0T T'T UOISIBA

(109lgo ainixa1 Jad arels) saunixal ‘$1°9 a|qeL

Get Initial
Get value Type Cmnd Value Description Sec. Attribute
TEXTUREMIN_FILTER n X Zg | GetTexParameter| see 3.7 | Texture minification 3.7.7| texture
function
TEXTURE.MAG_FILTER n X Zy | GetTexParameter| see 3.7 | Texture magnification 3.7.8| texture
function
& TEXTUREWRAP_S n x Zy | GetTexParameter | REPEAT | Texcoords wrap mode 3.7.6 | texture
& TEXTURE.WRAP.T n X Zy | GetTexParameter | REPEAT | Texcoordt wrap mode 3.7.6 | texture
GENERATEMIPMAP n x B | GetTexParameter| FALSE | Automatic mipmap 3.7.7| texture
generation

S318V.L 31VIS 29

GET

(2002 ‘TE YoreN - 14vHa) 0T T'T UOISIBA

UOITeIBUIS) pUE JUBWUOIIAUT 2INIX3] "ST'9 a|gel

Get Initial
Get value Type Cmnd Value Description Sec. Attribute
ACTIVE_TEXTURE Zos Getintegerv | TEXTUREO | Active texture unit selector 2.7 texture
TEXTUREENV.MODE || 2% X Zg | GetTexEnviv | MODULATE | Texture application function 3.7.12| texture
TEXTUREENV.COLOR || 2% xC | GetTexEnviv 0,0,0,0 Texture environment color 3.7.12| texture
coornRePLACECES || 2% X B | GetTexEnviv False Point coordinate replacement 3.3 texture
enabled
COMBINE.RGB 2% xZg | GetTexEnviv | MODULATE | RGB combiner function 3.7.12| texture
COMBINE.ALPHA 2x xXZg | GetTexEnviv | MODULATE | Alpha combiner function 3.7.12| texture
SRCQRGB 2% xZ3 | GetTexEnviv | TEXTURE RGB source 0 3.7.12| texture
SRCLRGB 2% xZ3 | GetTexEnviv | PREVI QUS | RGB source 1 3.7.12| texture
SRC2RGB 2% xZ3 | GetTexEnviv | CONSTANT | RGB source 2 3.7.12| texture
SRCQALPHA 2x xZ3 | GetTexEnviv | TEXTURE | Alpha source 0 3.7.12| texture
SRCILALPHA 2x xZ3 | GetTexEnviv | PREVI QUS | Alpha source 1 3.7.12| texture
SRC2ALPHA 2x xZ3 | GetTexEnviv | CONSTANT | Alpha source 2 3.7.12| texture
OPERANDQRGB 2x xZy | GetTexEnviv | SRC.COLOR | RGB operand 0 3.7.12| texture
OPERANDLRGB 2x xZ4 | GetTexEnviv | SRC.COLOR | RGB operand 1 3.7.12| texture
OPERAND2RGB 2x xZ4 | GetTexEnviv | SRCALPHA | RGB operand 2 3.7.12| texture
OPERANDQALPHA 2% XZy | GetTexEnviv | SRC.ALPHA | Alpha operand 0 3.7.12| texture
OPERANDLALPHA 2% xZy | GetTexEnviv | SRCALPHA | Alpha operand 1 3.7.12| texture
OPERAND2ALPHA 2% XZy | GetTexEnviv | SRC.ALPHA | Alpha operand 2 3.7.12| texture
& RGESCALE 2% XxR3 | GetTexEnvfv 1.0 RGB post-combiner scaling 3.7.12| texture
& ALPHA SCALE 2% xRz | GetTexEnvfv 1.0 Alpha post-combiner scaling 3.7.12| texture

S318V.L 31VIS 29

9€T

(2002 ‘TE YoreN - 14vHa) 0T T'T UOISIBA

suonesadQ [axId "9T'9 d|qel

Get Initial

Get value Type Cmnd Value Description Sec. Attribute
SCISSORTEST B IsEnabled False | Scissoring enabled 4.1.2 scissor/enable
SCISSORBOX 4 x Z | Getintegerv | see 4.1.2| Scissor box 41.2 scissor
ALPHA_TEST B IsEnabled False | Alphatestenabled 4.1.4| color-buffer/enable
ALPHA TEST.FUNC Zg Getintegerv | ALWAYS | Alpha test function 41.4 color-buffer
ALPHA_TEST.REF RT Getlintegerv 0 Alpha test reference value 4.1.4 color-buffer
STENCILTEST B IsEnabled False | Stenciling enabled 4.1.5 | stencil-buffer/enable
STENCILFUNC 73 Getintegerv | ALWAYS | Stencil function 4,15 stencil-buffer
STENCIL VALUE MASK zZ+ Getlintegerv 1's Stencil mask 4.1.5 stencil-buffer
STENCILREF A Getlintegerv 0 Stencil reference value 4.1.5 stencil-buffer
STENCILFAIL Zg Getintegerv | KEEP | Stencil fail action 4.1.5 stencil-buffer
STENCILPASSDEPTHFAIL Zg Getintegerv | KEEP | Stencil depth buffer fail action 4.1.5 stencil-buffer
STENCILPASSDEPTHPASS Zg Getintegerv | KEEP | Stencil depth buffer pass action 4.1.5 stencil-buffer
DEPTHTEST B IsEnabled False | Depth buffer enabled 4.1.6 | depth-buffer/enable
DEPTHFUNC 73 Getintegerv | LESS Depth buffer test function 4.1.6 depth-buffer
BLEND B IsEnabled False | Blending enabled 4.1.7 | color-buffer/enable
& BLEND.SRC Zg Getlintegerv ONE Blending source function 4.1.7 color-buffer
& BLEND DST Zsg Getintegerv | ZERO | Blending dest. function 41.7 color-buffer
DITHER B IsEnabled True Dithering enabled 4.1.8 | color-buffer/enable
COLORLOGIC.OP B IsEnabled False | Color logic op enabled 4.1.9| color-buffer/enable
LOGIC.OP.MODE Z1¢ | Getintegerv | COPY | Logic op function 4.1.9 color-buffer

S318V.L 31VIS 29

LET

(2002 ‘TE YoreN - 14vHa) 0T T'T UOISIBA

sanfeA Juapuadaq uoneuswsa|dw] "0z 9 a|geL

Get Minimum
Get value Type Cmnd Value Description Sec. Attribute

MAX LIGHTS A Getlntegerv 8 Maximum number of lights 2121 -

& MAX _CLIP_PLANES zZ+ Getlntegerv 1 Maximum number of user clipping| 2.11 -
planes

MAX _MODELVIEW_STACK_DEPTH A Getlntegerv 16 Maximum model-view stack depth| 2.10.2 -

MAX_PROJECTIONSTACK_DEPTH zZ+ Getlntegerv 2 Maximum projection matrix stack | 2.10.2 -
depth

MAX _TEXTURE STACK DEPTH zZ+ Getlntegerv 2 Maximum number depth of texture| 2.10.2 -
matrix stack

SUBPIXELBITS A Getlntegerv 4 Number of bits of subpixel 3 -
precision in screem,, andy,,

MAX _TEXTURE SIZE zZ+ Getlntegerv 64 Maximum texture image dimension 3.7.1 -

MAX _VIEWPORT.DIMS 2 x ZT | Getintegerv | see 2.10.1 Maximum viewport dimensions 2.10.1 -

S318V.L 31VIS 29

T

A.3. INVARIANCE RULES 148

Writemasks (colgrdepth, stencil)

Clear values (colgrdepth, stencil)

Current values (colgrnormal, texture coords)

Material properties (ambiendiffuse, specular, emission, shininess)
Strongly suggested:

e Matrix mode

e Matrix stack depths

¢ Alpha test parameters (other than enable)

e Stencil parameters (other than enable)

e Depth test parameters (other than enable)

e Blend parameters (other than enable)

¢ Logical operation parameters (other than enable)
e Pixel storage

e Polygon offset parameters (other than enables, and excdpesy affect
the depth values of fragments)

Corollary 1 Fragment generation is invariant with respect to the statdues
marked withe in Rule 2.

Corollary 2 The window coordinates (X, y, and z) of generated fragmentalao
invariant with respect to

Required:

e Current values (colgrnormal, texture coords)
e Material properties (ambient, diffuse, specular, emigsghininess)

Rule 3 The arithmetic of each per-fragment operation is invariartept with re-
spect to parameters that directly control it (the paramstérat control the alpha
test, for instance, are the alpha test enable, the alphaftesttion, and the alpha
test reference value).

Corollary 3 Images rendered into different color buffers sharing themedrame-

buffer, either simultaneously or separately using the saammand sequence, are
pixel identical.

Version 1.1.10 (DRAFT - March 31, 2007)

Appendix B

Corollaries

The following observations are derived from the body andatier appendixes of
the specification. Absence of an observation from this figté way impugns its
veracity.

1.

The error semantics of upward compatible OpenGL ES m@visimay
change. Otherwise, only additions can be made to upward atibig re-
visions.

. GL query commands are not required to satisfy the sensatitheFlush

or theFinish commands. All that is required is that the queried state Ine co
sistent with complete execution of all previously execuBddcommands.

. Application specified point size and line width must beine¢d as specified

when queried. Implementation dependent clamping affées/alues only
while they are in use.

. The mask specified as the third argumergtencilFuncaffects the operands

of the stencil comparison function, but has no direct eftatthe update of
the stencil buffer. The mask specified ByencilMask has no effect on the
stencil comparison function; it limits the effect of the @pel of the stencil
buffer.

. A material property that is attached to the current coloy €nabling

COLOR.VATERI AL) always takes the value of the current color. Attempts
to change that material property \lidaterial calls have no effect.

. There is no atomicity requirement for OpenGL ES rendegngimands,

even at the fragment level.

150

C.3. CORE ADDITIONS AND EXTENSIONS 153

in floating-point, the CL profile may always store it in fixedipt instead. Appli-
cations using the CL profile must call tlietFixedv command, or the equivalent
fixed-point versions of enumerated queries, suclaflightxv, to query such
state.

C.3 Core Additions and Extensions

An OpenGL ES profile consists of two parts: a subset of the QuenGL
pipeline, and some extended functionality that is drawmfeoset of OpenGL ES
-specific extensions to the full OpenGL specification. Eaderesion is pruned
to match the profile’'s command subset and added to the prafikbtiaer a core
addition or a profile extension. Core additions differ fromfile extensions in that
the commands and tokens do not include extension suffixéginrtames.

Profile extensions are further divided into required (maodg and optional
extensions. Required extensions must be implemented &asfaconforming im-
plementation, whereas the implementation of optionalresitas is left to the dis-
cretion of the implementor. Both types of extensions useresibn suffixes as part
of their names, are present in tBXTENSI ONS string, and participate in function
address queries defined in the platform embedding layeniRmbextensions have
the additional packaging constraint, that commands defasepart of a required
extension must also be available as part of a static bindingre commands are
also available in a static binding. The commands comprigimgptional extension
may optionally be included as part of a static binding.

From an API perspective, commands and tokens comprisingesacialition are
indistinguishable from the original OpenGL subset. Howgleincrease applica-
tion portability, an implementation may also implement acaddition as an ex-
tension by including suffixed versions of commands and tskerthe appropriate
dynamic and optional static bindings and the extension narttee EXTENSI ONS
string.

The Common and Common-Lite profiles add subsets
of the CES byt e coor di nat es, OES fi xed_poi nt, OES_si ngl e_pr eci si on
and OES.matri x_get OpenGL ES -specific extensions as
core additions, an@ES_r ead_f or mat , OES_conpr essed_pal et t ed_t ext ur e,
OES_poi nt _si ze_array andOES_poi nt _spri t e as required profile extensions.
All of these extensions are incorporated into the body ofgpecification. The
OES_mat ri x_pal ett e andOES_dr aw.t ext ur e are added as optional profile ex-
tensions, and specified separately in the Khronos Exteri®amistry, on the web
at URL http://www.khronos.org/registry/gles.

Version 1.1.10 (DRAFT - March 31, 2007)

C.3. CORE ADDITIONS AND EXTENSIONS

154

Floating-point commands only

Equivalent fixed-point commands

supported in the Common profile support in both Common and Common-L
AlphaFunc AlphaFuncx
ClearColor ClearColorx
ClearDepthf ClearDepthx
ClipPlanef ClipPlanex

Coloraf Colordx
DepthRangef DepthRangex

Fogf, Fogfv Fogx, Fogxv
Frustumf Frustumx
GetClipPlanef GetClipPlanex
GetFloatv GetFixedv
GetLightfv GetLightxv
GetMaterialfv GetMaterialxv
GetTexEnvfv GetTexEnvxv
GetTexParameterfv GetTexParameterxv

LightModelf, LightModelfv

LightModelx, LightModelxv

Lightf, Lightfv

Lightx, Lightxv

LineWidth LineWidthx
LoadMatrixf LoadMatrixx
Materialf , Materialfv Materialx , Materialxv
MultMatrixf MultMatrixx
MultiTexCoord4f MultiTexCoord4x
Normal3f Normal3x

Orthof Orthox

PointParameterf, PointParameterfv

PointParameterx, PointParameterxv

PointSize

PointSizex

PolygonOffset PolygonOffsetx
Rotatef Rotatex
SampleCoverage SampleCoveragex
Scalef Scalex

TexEnvf, TexEnvfv

TexEnvx, TexEnvxv

TexParameterf, TexParameterfv

TexParameterx, TexParameterxv

Translatef

Translatex

Vertex array command&CplorPointer,
NormalPointer, TexCoordPointer,
andVertexPointer) with typeFLOAT

UsetypeFI XEDinstead

Table C.1: Common and Common-Lite commands.

Version 1.1.10 (DRAFT - March 31, 2007)

C.3. CORE ADDITIONS AND EXTENSIONS 156

(DepthRange Frustum, Ortho, etc.). Only the subset matching the profile feature =
set is included in the Common profile.

DepthRange{clampf n, clampf f)

Frustumf(float I, float r, float b, float t, float n, float f
Orthof (float I, float r, float b, float t, float n, float f)
ClearDepthf(clampf depth)

GetClipPlanef(enum pname, float egn[4])

C.3.4 Compressed Paletted Texture

The OES_conpressed pal etted.texture extension provides a method for
specifying a compressed texture image as a color index imagempanied by
a palette. The extension adds ten new texture internal fisrinaspecify different
combinations of index width and palette color format, agdbsd in section 3.7.3.

C.3.5 Read Format

The OES_read f or mat extension allows implementation-specific pixel type and
format parameters to be queried by an application and us&eadPixelscom-
mands, as described in section 4.3.1

C.3.6 Matrix Palette

The optionalCES_mat ri x_pal et t e extension adds the ability to support vertex
skinning in OpenGL ES. This extension allow OpenGL ES to suipp palette of
matrices. The matrix palette defines a set of matrices threbeaised to transform
a vertex. The matrix palette is not part of the model view Rattack and is
enabled by setting theATRI X_MODE to MATRI X_PALETTE_CES.

Then vertex units use a palette of modelview matrices (where andm are
constrained to implementation defined maxima). Each vérdexa set of. indices
into the palette, and a corresponding set.afeights. Matrix indices and weights
can be changed for each vertex.

When this extension is utilized, the enabled units tramsfeach vertex by the
modelview matrices specified by the vertices’ respectidicies. These results are
subsequently scaled by the weights of the respective undstlzen summed to
create the eyespace vertex.

Version 1.1.10 (DRAFT - March 31, 2007)

C.4. PACKAGING 161

version 1.1.10, draft of 2007/02/06 Noted in section 2.10.3 that normal vectors
are treated as row vectors transformed by matrix postniigiéifion, which may be
unfamiliar to some graphics programmers. Removed X Windgstedn trademark
information from the copyright pages

version 1.1.10, draft of 2007/03/31 Document scaling of integer to fixed-point
parameters. Polygon smooth mode is not supported. Fronbacidmaterial col-
ors exist in terms of the API, but are constrained to alwaygetthe same val-
ues. General polygons are not supported. Remove referémdesture borders.
Many other minor fixes and clarifications from WG review - sda#hos member
Bugzilla bugs 1247, 1257, 1258, 1259

Version 1.1.10 (DRAFT - March 31, 2007)

